283 research outputs found

    Iterative methods for elliptic finite element equations on general meshes

    Get PDF
    Iterative methods for arbitrary mesh discretizations of elliptic partial differential equations are surveyed. The methods discussed are preconditioned conjugate gradients, algebraic multigrid, deflated conjugate gradients, an element-by-element techniques, and domain decomposition. Computational results are included

    Using GPU to Accelerate Linear Computations in Power System Applications

    Get PDF
    With the development of advanced power system controls, the industrial and research community is becoming more interested in simulating larger interconnected power grids. It is always critical to incorporate advanced computing technologies to accelerate these power system computations. Power flow, one of the most fundamental computations in power system analysis, converts the solution of non-linear systems to that of a set of linear systems via the Newton method or one of its variants. An efficient solution to these linear equations is the key to improving the performance of power flow computation, and hence to accelerating other power system applications based on power flow computation, such as optimal power flow, contingency analysis, etc. This dissertation focuses on the exploration of iterative linear solvers and applicable preconditioners, with graphic processing unit (GPU) implementations to achieve performance improvement on the linear computations in power flow computations. An iterative conjugate gradient solver with Chebyshev preconditioner is studied first, and then the preconditioner is extended to a two-step preconditioner. At last, the conjugate gradient solver and the two-step preconditioner are integrated with MATPOWER to solve the practical fast decoupled load flow (FDPF), and an inexact linear solution method is proposed to further save the runtime of FDPF. Performance improvement is reported by applying these methods and GPU-implementation. The final complete GPU-based FDPF with inexact linear solving can achieve nearly 3x performance improvement over the MATPOWER implementation for a test system with 11,624 buses. A supporting study including a quick estimation of the largest eigenvalue of the linear system which is required by the Chebyshev preconditioner is presented as well. This dissertation demonstrates the potential of using GPU with scalable methods in power flow computation

    Higer-Order Intergral Equation Methods in Computational Electromagnetics

    Get PDF

    Hybrid multigrid methods for high-order discontinuous Galerkin discretizations

    Full text link
    The present work develops hybrid multigrid methods for high-order discontinuous Galerkin discretizations of elliptic problems. Fast matrix-free operator evaluation on tensor product elements is used to devise a computationally efficient PDE solver. The multigrid hierarchy exploits all possibilities of geometric, polynomial, and algebraic coarsening, targeting engineering applications on complex geometries. Additionally, a transfer from discontinuous to continuous function spaces is performed within the multigrid hierarchy. This does not only further reduce the problem size of the coarse-grid problem, but also leads to a discretization most suitable for state-of-the-art algebraic multigrid methods applied as coarse-grid solver. The relevant design choices regarding the selection of optimal multigrid coarsening strategies among the various possibilities are discussed with the metric of computational costs as the driving force for algorithmic selections. We find that a transfer to a continuous function space at highest polynomial degree (or on the finest mesh), followed by polynomial and geometric coarsening, shows the best overall performance. The success of this particular multigrid strategy is due to a significant reduction in iteration counts as compared to a transfer from discontinuous to continuous function spaces at lowest polynomial degree (or on the coarsest mesh). The coarsening strategy with transfer to a continuous function space on the finest level leads to a multigrid algorithm that is robust with respect to the penalty parameter of the SIPG method. Detailed numerical investigations are conducted for a series of examples ranging from academic test cases to more complex, practically relevant geometries. Performance comparisons to state-of-the-art methods from the literature demonstrate the versatility and computational efficiency of the proposed multigrid algorithms
    corecore