570 research outputs found

    Assessments of macroscopicity for quantum optical states

    Full text link
    With the slow but constant progress in the coherent control of quantum systems, it is now possible to create large quantum superpositions. There has therefore been an increased interest in quantifying any claims of macroscopicity. We attempt here to motivate three criteria which we believe should enter in the assessment of macroscopic quantumness: The number of quantum fluctuation photons, the purity of the states, and the ease with which the branches making up the state can be distinguished

    Macroscopicity of quantum superpositions on a one-parameter unitary path in Hilbert space

    Get PDF
    We analyze quantum states formed as superpositions of an initial pure product state and its image under local unitary evolution, using two measurement-based measures of superposition size: one based on the optimal quantum binary distinguishability of the branches of the superposition and another based on the ratio of the maximal quantum Fisher information of the superposition to that of its branches, i.e., the relative metrological usefulness of the superposition. A general formula for the effective sizes of these states according to the branch distinguishability measure is obtained and applied to superposition states of NN quantum harmonic oscillators composed of Gaussian branches. Considering optimal distinguishability of pure states on a time-evolution path leads naturally to a notion of distinguishability time that generalizes the well known orthogonalization times of Mandelstam and Tamm and Margolus and Levitin. We further show that the distinguishability time provides a compact operational expression for the superposition size measure based on the relative quantum Fisher information. By restricting the maximization procedure in the definition of this measure to an appropriate algebra of observables, we show that the superposition size of, e.g., N00N states and hierarchical cat states, can scale linearly with the number of elementary particles comprising the superposition state, implying precision scaling inversely with the total number of photons when these states are employed as probes in quantum parameter estimation of a 1-local Hamiltonian in this algebra

    Resource theory of asymmetric distinguishability

    Get PDF
    This paper systematically develops the resource theory of asymmetric distinguishability, as initiated roughly a decade ago [K. Matsumoto, arXiv:1010.1030 (2010)]. The key constituents of this resource theory are quantum boxes, consisting of a pair of quantum states, which can be manipulated for free by means of an arbitrary quantum channel. We introduce bits of asymmetric distinguishability as the basic currency in this resource theory, and we prove that it is a reversible resource theory in the asymptotic limit, with the quantum relative entropy being the fundamental rate of resource interconversion. The distillable distinguishability is the optimal rate at which a quantum box consisting of independent and identically distributed (i.i.d.) states can be converted to bits of asymmetric distinguishability, and the distinguishability cost is the optimal rate for the reverse transformation. Both of these quantities are equal to the quantum relative entropy. The exact one-shot distillable distinguishability is equal to the min-relative entropy, and the exact one-shot distinguishability cost is equal to the max-relative entropy. Generalizing these results, the approximate one-shot distillable distinguishability is equal to the smooth min-relative entropy, and the approximate one-shot distinguishability cost is equal to the smooth max-relative entropy. As a notable application of the former results, we prove that the optimal rate of asymptotic conversion from a pair of i.i.d. quantum states to another pair of i.i.d. quantum states is fully characterized by the ratio of their quantum relative entropies.Comment: v3: 28 page

    Entropic measures of joint uncertainty: effects of lack of majorization

    Get PDF
    We compute R\'enyi entropies for the statistics of a noisy simultaneous observation of two complementary observables in two-dimensional quantum systems. The relative amount of uncertainty between two states depends on the uncertainty measure used. These results are not reproduced by a more standard duality relation. We show that these behaviors are consistent with the lack of majorization relation between the corresponding statistics.Comment: 10 pages, 3 figure

    Comparison of non-Markovianity criteria in a qubit system under random external fields

    Full text link
    We give the map representing the evolution of a qubit under the action of non-dissipative random external fields. From this map we construct the corresponding master equation that in turn allows us to phenomenologically introduce population damping of the qubit system. We then compare, in this system, the time-regions when non-Markovianity is present on the basis of different criteria both for the non-dissipative and dissipative case. We show that the adopted criteria agree both in the non-dissipative case and in the presence of population damping.Comment: 8 pages, 1 figure. Some changes made. In press on Physica Scripta T (special issue

    Geometry from Information Geometry

    Full text link
    We use the method of maximum entropy to model physical space as a curved statistical manifold. It is then natural to use information geometry to explain the geometry of space. We find that the resultant information metric does not describe the full geometry of space but only its conformal geometry -- the geometry up to local changes of scale. Remarkably, this is precisely what is needed to model "physical" space in general relativity.Comment: Presented at MaxEnt 2015, the 35th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (July 19-24, 2015, Potsdam NY, USA
    • …
    corecore