4,362 research outputs found

    POSTER: A Pyramid Cross-Fusion Transformer Network for Facial Expression Recognition

    Full text link
    Facial Expression Recognition (FER) has received increasing interest in the computer vision community. As a challenging task, there are three key issues especially prevalent in FER: inter-class similarity, intra-class discrepancy, and scale sensitivity. Existing methods typically address some of these issues, but do not tackle them all in a unified framework. Therefore, in this paper, we propose a two-stream Pyramid crOss-fuSion TransformER network (POSTER) that aims to holistically solve these issues. Specifically, we design a transformer-based cross-fusion paradigm that enables effective collaboration of facial landmark and direct image features to maximize proper attention to salient facial regions. Furthermore, POSTER employs a pyramid structure to promote scale invariance. Extensive experimental results demonstrate that our POSTER outperforms SOTA methods on RAF-DB with 92.05%, FERPlus with 91.62%, AffectNet (7 cls) with 67.31%, and AffectNet (8 cls) with 63.34%, respectively

    Creative tools for producing realistic 3D facial expressions and animation

    Get PDF
    Creative exploration of realistic 3D facial animation is a popular but very challenging task due to the high level knowledge and skills required. This forms a barrier for creative individuals who have limited technical skills but wish to explore their creativity in this area. This paper proposes a new technique that facilitates users’ creative exploration by hiding the technical complexities of producing facial expressions and animation. The proposed technique draws on research from psychology, anatomy and employs Autodesk Maya as a use case by developing a creative tool, which extends Maya’s Blend Shape Editor. User testing revealed that novice users in the creative media, employing the proposed tool can produce rich and realistic facial expressions that portray new interesting emotions. It reduced production time by 25% when compared to Maya and by 40% when compared to 3DS Max equivalent tools

    A study of facial expression recognition technologies on deaf adults and their children

    Full text link
    Facial and head movements have important linguistic roles in American Sign Language (ASL) and other sign languages and can often significantly alter the meaning or interpretation of what is being communicated. Technologies that enable accurate recognition of ASL linguistic markers could be a step toward greater independence and empowerment for the Deaf community. This study involved gathering over 2,000 photographs of five hearing subjects, five Deaf subjects, and five Child of Deaf Adults (CODA) subjects. Each subject produced the six universal emotional facial expressions: sad, happy, surprise, anger, fear, and disgust. In addition, each Deaf and CODA subject produced six different ASL linguistic facial expressions. A representative set of 750 photos was submitted to six different emotional facial expression recognition services, and the results were processed and compared across different facial expressions and subject groups (hearing, Deaf, CODA). Key observations from these results are presented. First, poor face detection rates are observed for Deaf subjects as compared to hearing and CODA subjects. Second, emotional facial expression recognition appears to be more accurate for Deaf and CODA subjects than for hearing subjects. Third, ASL linguistic markers, which are distinct from emotional expressions, are often misinterpreted as negative emotions by existing technologies. Possible implications of this misinterpretation are discussed, such as the problems that could arise for the Deaf community with increasing surveillance and use of automated facial analysis tools. Finally, an inclusive approach is suggested for incorporating ASL linguistic markers into existing facial expression recognition tools. Several considerations are given for constructing an unbiased database of the various ASL linguistic markers, including the types of subjects that should be photographed and the importance of including native ASL signers in the photo selection and classification process.2019-06-30T00:00:00

    A framework for emotion and sentiment predicting supported in ensembles

    Get PDF
    Humans are prepared to comprehend each other’s emotions through subtle body movements or facial expressions; using those expressions, individuals change how they deliver messages when communicating between them. Machines, user interfaces, or robots need to empower this ability, in a way to change the interaction from the traditional “human-computer interaction” to a “human-machine cooperation”, where the machine provides the “right” information and functionality, at the “right” time, and in the “right” way. This dissertation presents a framework for emotion classification based on facial, speech, and text emotion prediction sources, supported by an ensemble of open-source code retrieved from off-the-shelf available methods. The main contribution is integrating outputs from different sources and methods in a single prediction, consistent with the emotions presented by the system’s user. For each different source, an initial aggregation of primary classifiers was implemented: for facial emotion classification, the aggregation achieved an accuracy above 73% in both FER2013 and RAF-DB datasets; For the speech emotion classification, four datasets were used, namely: RAVDESS, TESS, CREMA-D, and SAVEE. The aggregation of primary classifiers, achieved for a combination of three of the mentioned datasets results above 86 % of accuracy; The text emotion aggregation of primary classifiers was tested with one dataset called EMOTIONLINES, the classification of emotions achieved an accuracy above 53 %. Finally, the integration of all the methods in a single framework allows us to develop an emotion multi-source aggregator (EMsA), which aggregates the results extracted from the primary emotion classifications from different sources, such as facial, speech, text etc. We describe the EMsA and results using the RAVDESS dataset, which achieved 81.99% accuracy, in the case of the EMsA using a combination of faces and speech. Finally, we present an initial approach for sentiment classification.Os humanos estão preparados para compreender as emoções uns dos outros por meio de movimentos subtis do corpo ou expressões faciais; i.e., a forma como esses movimentos e expressões são enviados mudam a forma de como são entregues as mensagens quando os humanos comunicam entre eles. Máquinas, interfaces de utilizador ou robôs precisam de potencializar essa capacidade, de forma a mudar a interação do tradicional “interação humano-computador” para uma “cooperação homem-máquina”, onde a máquina fornece as informações e funcionalidades “certas”, na hora “certa” e da maneira “certa”. Nesta dissertação é apresentada uma estrutura (um ensemble de modelos) para classificação de emoções baseada em múltiplas fontes, nomeadamente na previsão de emoções faciais, de fala e de texto. Os classificadores base são suportados em código-fonte aberto associados a métodos disponíveis na literatura (classificadores primários). A principal contribuição é integrar diferentes fontes e diferentes métodos (os classificadores primários) numa única previsão consistente com as emoções apresentadas pelo utilizador do sistema. Neste contexto, salienta-se que da análise ao estado da arte efetuada sobre as diferentes formas de classificar emoções em humanos, existe o reconhecimento de emoção corporal (não considerando a face). No entanto, não foi encontrado código-fonte aberto e publicado para os classificadores primários que possam ser utilizados no âmbito desta dissertação. No reconhecimento de emoções da fala e texto foram também encontradas algumas dificuldades em encontrar classificadores primários com os requisitos necessários, principalmente no texto, pois existem bastantes modelos, mas com inúmeras emoções diferentes das 6 emoções básicas consideradas (tristeza, medo, surpresa, repulsa, raiva e alegria). Para o texto ainda possível verificar que existem mais modelos com a previsão de sentimento do que de emoções. De forma isolada para cada uma das fontes, i.e., para cada componente analisada (face, fala e texto), foi desenvolvido uma framework em Python que implementa um agregador primário com n classificadores primários (nesta dissertação considerou-se n igual 3). Para executar os testes e obter os resultados de cada agregador primário é usado um dataset específico e é enviado a informação do dataset para o agregador. I.e., no caso do agregador facial é enviado uma imagem, no caso do agregador da fala é enviado um áudio e no caso do texto é enviado a frase para a correspondente framework. Cada dataset usado foi dividido em ficheiros treino, validação e teste. Quando a framework acaba de processar a informação recebida são gerados os respetivos resultados, nomeadamente: nome do ficheiro/identificação do input, resultados do primeiro classificador primário, resultados do segundo classificador primário, resultados do terceiro classificador primário e ground-truth do dataset. Os resultados dos classificadores primários são depois enviados para o classificador final desse agregador primário, onde foram testados quatro classificadores: (a) voting, que, no caso de n igual 3, consiste na comparação dos resultados da emoção de cada classificador primário, i.e., se 2 classificadores primários tiverem a mesma emoção o resultado do voting será esse, se todos os classificadores tiverem resultados diferentes nenhum resultado é escolhido. Além deste “classificador” foram ainda usados (b) Random Forest, (c) Adaboost e (d) MLP (multiplayer perceptron). Quando a framework de cada agregador primário foi concluída, foi desenvolvido um super-agregador que tem o mesmo princípio dos agregadores primários, mas, agora, em vez de ter os resultados/agregação de apenas 3 classificadores primários, vão existir n × 3 resultados de classificadores primários (n da face, n da fala e n do texto). Relativamente aos resultados dos agregadores usados para cada uma das fontes, face, fala e texto, obteve-se para a classificação de emoção facial uma precisão de classificação acima de 73% nos datasets FER2013 e RAF-DB. Na classificação da emoção da fala foram utilizados quatro datasets, nomeadamente RAVDESS, TESS, CREMA-D e SAVEE, tendo que o melhor resultado de precisão obtido foi acima dos 86% quando usado a combinação de 3 dos 4 datasets. Para a classificação da emoção do texto, testou-se com o um dataset EMOTIONLINES, sendo o melhor resultado obtido foi de 53% (precisão). A integração de todas os classificadores primários agora num único framework permitiu desenvolver o agregador multi-fonte (emotion multi-source aggregator - EMsA), onde a classificação final da emoção é extraída, como já referido da agregação dos classificadores de emoções primárias de diferentes fontes. Para EMsA são apresentados resultados usando o dataset RAVDESS, onde foi alcançado uma precisão de 81.99 %, no caso do EMsA usar uma combinação de faces e fala. Não foi possível testar EMsA usando um dataset reconhecido na literatura que tenha ao mesmo tempo informação do texto, face e fala. Por último, foi apresentada uma abordagem inicial para classificação de sentimentos

    Multimodal emotion recognition based on the fusion of vision, EEG, ECG, and EMG signals

    Get PDF
    This paper presents a novel approach for emotion recognition (ER) based on Electroencephalogram (EEG), Electromyogram (EMG), Electrocardiogram (ECG), and computer vision. The proposed system includes two different models for physiological signals and facial expressions deployed in a real-time embedded system. A custom dataset for EEG, ECG, EMG, and facial expression was collected from 10 participants using an Affective Video Response System. Time, frequency, and wavelet domain-specific features were extracted and optimized, based on their Visualizations from Exploratory Data Analysis (EDA) and Principal Component Analysis (PCA). Local Binary Patterns (LBP), Local Ternary Patterns (LTP), Histogram of Oriented Gradients (HOG), and Gabor descriptors were used for differentiating facial emotions. Classification models, namely decision tree, random forest, and optimized variants thereof, were trained using these features. The optimized Random Forest model achieved an accuracy of 84%, while the optimized Decision Tree achieved 76% for the physiological signal-based model. The facial emotion recognition (FER) model attained an accuracy of 84.6%, 74.3%, 67%, and 64.5% using K-Nearest Neighbors (KNN), Random Forest, Decision Tree, and XGBoost, respectively. Performance metrics, including Area Under Curve (AUC), F1 score, and Receiver Operating Characteristic Curve (ROC), were computed to evaluate the models. The outcome of both results, i.e., the fusion of bio-signals and facial emotion analysis, is given to a voting classifier to get the final emotion. A comprehensive report is generated using the Generative Pretrained Transformer (GPT) language model based on the resultant emotion, achieving an accuracy of 87.5%. The model was implemented and deployed on a Jetson Nano. The results show its relevance to ER. It has applications in enhancing prosthetic systems and other medical fields such as psychological therapy, rehabilitation, assisting individuals with neurological disorders, mental health monitoring, and biometric security

    FAF: A novel multimodal emotion recognition approach integrating face, body and text

    Full text link
    Multimodal emotion analysis performed better in emotion recognition depending on more comprehensive emotional clues and multimodal emotion dataset. In this paper, we developed a large multimodal emotion dataset, named "HED" dataset, to facilitate the emotion recognition task, and accordingly propose a multimodal emotion recognition method. To promote recognition accuracy, "Feature After Feature" framework was used to explore crucial emotional information from the aligned face, body and text samples. We employ various benchmarks to evaluate the "HED" dataset and compare the performance with our method. The results show that the five classification accuracy of the proposed multimodal fusion method is about 83.75%, and the performance is improved by 1.83%, 9.38%, and 21.62% respectively compared with that of individual modalities. The complementarity between each channel is effectively used to improve the performance of emotion recognition. We had also established a multimodal online emotion prediction platform, aiming to provide free emotion prediction to more users

    Affective image content analysis: two decades review and new perspectives

    Get PDF
    corecore