39,531 research outputs found

    Fusing image representations for classification using support vector machines

    Full text link
    In order to improve classification accuracy different image representations are usually combined. This can be done by using two different fusing schemes. In feature level fusion schemes, image representations are combined before the classification process. In classifier fusion, the decisions taken separately based on individual representations are fused to make a decision. In this paper the main methods derived for both strategies are evaluated. Our experimental results show that classifier fusion performs better. Specifically Bayes belief integration is the best performing strategy for image classification task.Comment: Image and Vision Computing New Zealand, 2009. IVCNZ '09. 24th International Conference, Wellington : Nouvelle-Z\'elande (2009

    An Interpretable Deep Hierarchical Semantic Convolutional Neural Network for Lung Nodule Malignancy Classification

    Full text link
    While deep learning methods are increasingly being applied to tasks such as computer-aided diagnosis, these models are difficult to interpret, do not incorporate prior domain knowledge, and are often considered as a "black-box." The lack of model interpretability hinders them from being fully understood by target users such as radiologists. In this paper, we present a novel interpretable deep hierarchical semantic convolutional neural network (HSCNN) to predict whether a given pulmonary nodule observed on a computed tomography (CT) scan is malignant. Our network provides two levels of output: 1) low-level radiologist semantic features, and 2) a high-level malignancy prediction score. The low-level semantic outputs quantify the diagnostic features used by radiologists and serve to explain how the model interprets the images in an expert-driven manner. The information from these low-level tasks, along with the representations learned by the convolutional layers, are then combined and used to infer the high-level task of predicting nodule malignancy. This unified architecture is trained by optimizing a global loss function including both low- and high-level tasks, thereby learning all the parameters within a joint framework. Our experimental results using the Lung Image Database Consortium (LIDC) show that the proposed method not only produces interpretable lung cancer predictions but also achieves significantly better results compared to common 3D CNN approaches

    Multi-Modal Multi-Scale Deep Learning for Large-Scale Image Annotation

    Full text link
    Image annotation aims to annotate a given image with a variable number of class labels corresponding to diverse visual concepts. In this paper, we address two main issues in large-scale image annotation: 1) how to learn a rich feature representation suitable for predicting a diverse set of visual concepts ranging from object, scene to abstract concept; 2) how to annotate an image with the optimal number of class labels. To address the first issue, we propose a novel multi-scale deep model for extracting rich and discriminative features capable of representing a wide range of visual concepts. Specifically, a novel two-branch deep neural network architecture is proposed which comprises a very deep main network branch and a companion feature fusion network branch designed for fusing the multi-scale features computed from the main branch. The deep model is also made multi-modal by taking noisy user-provided tags as model input to complement the image input. For tackling the second issue, we introduce a label quantity prediction auxiliary task to the main label prediction task to explicitly estimate the optimal label number for a given image. Extensive experiments are carried out on two large-scale image annotation benchmark datasets and the results show that our method significantly outperforms the state-of-the-art.Comment: Submited to IEEE TI

    Multi-label Class-imbalanced Action Recognition in Hockey Videos via 3D Convolutional Neural Networks

    Get PDF
    Automatic analysis of the video is one of most complex problems in the fields of computer vision and machine learning. A significant part of this research deals with (human) activity recognition (HAR) since humans, and the activities that they perform, generate most of the video semantics. Video-based HAR has applications in various domains, but one of the most important and challenging is HAR in sports videos. Some of the major issues include high inter- and intra-class variations, large class imbalance, the presence of both group actions and single player actions, and recognizing simultaneous actions, i.e., the multi-label learning problem. Keeping in mind these challenges and the recent success of CNNs in solving various computer vision problems, in this work, we implement a 3D CNN based multi-label deep HAR system for multi-label class-imbalanced action recognition in hockey videos. We test our system for two different scenarios: an ensemble of kk binary networks vs. a single kk-output network, on a publicly available dataset. We also compare our results with the system that was originally designed for the chosen dataset. Experimental results show that the proposed approach performs better than the existing solution.Comment: Accepted to IEEE/ACIS SNPD 2018, 6 pages, 3 figure
    corecore