5,313 research outputs found

    Constructing Parsimonious Analytic Models for Dynamic Systems via Symbolic Regression

    Full text link
    Developing mathematical models of dynamic systems is central to many disciplines of engineering and science. Models facilitate simulations, analysis of the system's behavior, decision making and design of automatic control algorithms. Even inherently model-free control techniques such as reinforcement learning (RL) have been shown to benefit from the use of models, typically learned online. Any model construction method must address the tradeoff between the accuracy of the model and its complexity, which is difficult to strike. In this paper, we propose to employ symbolic regression (SR) to construct parsimonious process models described by analytic equations. We have equipped our method with two different state-of-the-art SR algorithms which automatically search for equations that fit the measured data: Single Node Genetic Programming (SNGP) and Multi-Gene Genetic Programming (MGGP). In addition to the standard problem formulation in the state-space domain, we show how the method can also be applied to input-output models of the NARX (nonlinear autoregressive with exogenous input) type. We present the approach on three simulated examples with up to 14-dimensional state space: an inverted pendulum, a mobile robot, and a bipedal walking robot. A comparison with deep neural networks and local linear regression shows that SR in most cases outperforms these commonly used alternative methods. We demonstrate on a real pendulum system that the analytic model found enables a RL controller to successfully perform the swing-up task, based on a model constructed from only 100 data samples

    Semantic variation operators for multidimensional genetic programming

    Full text link
    Multidimensional genetic programming represents candidate solutions as sets of programs, and thereby provides an interesting framework for exploiting building block identification. Towards this goal, we investigate the use of machine learning as a way to bias which components of programs are promoted, and propose two semantic operators to choose where useful building blocks are placed during crossover. A forward stagewise crossover operator we propose leads to significant improvements on a set of regression problems, and produces state-of-the-art results in a large benchmark study. We discuss this architecture and others in terms of their propensity for allowing heuristic search to utilize information during the evolutionary process. Finally, we look at the collinearity and complexity of the data representations that result from these architectures, with a view towards disentangling factors of variation in application.Comment: 9 pages, 8 figures, GECCO 201

    A rigorous evaluation of crossover and mutation in genetic programming

    Get PDF
    The role of crossover and mutation in Genetic Programming (GP) has been the subject of much debate since the emergence of the field. In this paper, we contribute new empirical evidence to this argument using a rigorous and principled experimental method applied to six problems common in the GP literature. The approach tunes the algorithm parameters to enable a fair and objective comparison of two different GP algorithms, the first using a combination of crossover and reproduction, and secondly using a combination of mutation and reproduction. We find that crossover does not significantly outperform mutation on most of the problems examined. In addition, we demonstrate that the use of a straightforward Design of Experiments methodology is effective at tuning GP algorithm parameters

    Global solar irradiation prediction using a multi-gene genetic programming approach

    Get PDF
    This is the author accepted manuscript. The final version is available from AIP Publishing via the DOI in this record.In this paper, a nonlinear symbolic regression technique using an evolutionary algorithm known as multi-gene genetic programming (MGGP) is applied for a data-driven modelling between the dependent and the independent variables. The technique is applied for modelling the measured global solar irradiation and validated through numerical simulations. The proposed modelling technique shows improved results over the fuzzy logic and artificial neural network (ANN) based approaches as attempted by contemporary researchers. The method proposed here results in nonlinear analytical expressions, unlike those with neural networks which is essentially a black box modelling approach. This additional flexibility is an advantage from the modelling perspective and helps to discern the important variables which affect the prediction. Due to the evolutionary nature of the algorithm, it is able to get out of local minima and converge to a global optimum unlike the back-propagation (BP) algorithm used for training neural networks. This results in a better percentage fit than the ones obtained using neural networks by contemporary researchers. Also a hold-out cross validation is done on the obtained genetic programming (GP) results which show that the results generalize well to new data and do not over-fit the training samples. The multi-gene GP results are compared with those, obtained using its single-gene version and also the same with four classical regression models in order to show the effectiveness of the adopted approach
    • …
    corecore