36 research outputs found

    Fluid reasoning and the developing brain.

    Get PDF
    Fluid reasoning is the cornerstone of human cognition, both during development and in adulthood. Despite this, the neural mechanisms underlying the development of fluid reasoning are largely unknown. In this review, we provide an overview of this important cognitive ability, the method of measurement, its changes over the childhood and adolescence of an individual, and its underlying neurobiological underpinnings. We review important findings from psychometric, cognitive, and neuroscientific literatures, and outline important future directions for this interdisciplinary research

    The BOLD signal and neurovascular coupling in autism

    Get PDF
    BOLD (blood oxygen level dependent) fMRI (functional magnetic resonance imaging) is commonly used to study differences in neuronal activity between human populations. As the BOLD response is an indirect measure of neuronal activity, meaningful interpretation of differences in BOLD responses between groups relies upon a stable relationship existing between neuronal activity and the BOLD response across these groups. However, this relationship can be altered by changes in neurovascular coupling or energy consumption, which would lead to problems in identifying differences in neuronal activity. In this review, we focus on fMRI studies of people with autism, and comparisons that are made of their BOLD responses with those of control groups. We examine neurophysiological differences in autism that may alter neurovascular coupling or energy use, discuss recent studies that have used fMRI to identify differences between participants with autism and control participants, and explore experimental approaches that could help attribute between-group differences in BOLD signals to either neuronal or neurovascular factors

    Neuronal activation for semantically reversible sentences

    Get PDF
    Semantically reversible sentences are prone to misinterpretation and take longer for typically developing children and adults to comprehend; they are also particularly problematic for those with language difficulties such as aphasia or Specific Language Impairment. In our study, we used fMRI to compare the processing of semantically reversible and nonreversible sentences in 41 healthy participants to identify how semantic reversibility influences neuronal activation. By including several linguistic and nonlinguistic conditions within our paradigm, we were also able to test whether the processing of semantically reversible sentences places additional load on sentence-specific processing, such as syntactic processing and syntactic-semantic integration, or on phonological working memory. Our results identified increased activation for reversible sentences in a region on the left temporal–parietal boundary, which was also activated when the same group of participants carried out an articulation task which involved saying “one, three” repeatedly. We conclude that the processing of semantically reversible sentences places additional demands on the subarticulation component of phonological working memory

    Neural correlates of affective contributions to lexical decisions in children and adults

    Get PDF
    The goal of the present study was to investigate whether 6–9-year old children and adults show similar neural responses to affective words. An event-related neuroimaging paradigm was used in which both age cohorts performed the same auditory lexical decision task (LDT). The results show similarities in (auditory) lexico-semantic network activation as well as in areas associated with affective information. In both age cohorts’ activations were stronger for positive than for negative words, thus exhibiting a positivity superiority effect. Children showed less activation in areas associated with affective information in response to all three valence categories than adults. Our results are discussed in the light of computational models of word recognition, and previous findings of affective contributions to LDT in adults

    Developmental Continuity and Change in Responses to Social and Nonsocial Categories in Human Extrastriate Visual Cortex

    Get PDF
    It is well known that adult human extrastriate visual cortex contains areas that respond in a selective fashion to specific categories of visual stimuli. Three regions have been identified with particular regularity: the fusiform face area (FFA), which responds to faces more than to other objects; the parahippocampal place area (PPA), which responds selectively to images of houses, places, and visual scenes; and the extrastriate body area (EBA), which responds specifically to images of bodies and body parts. While the presence of these regions in the mature human brain is well-established, the degree to which children possess these areas and the degree of functional specialization of these areas in children of various ages has thus far remained unclear. This functional magnetic resonance imaging study examined the development of the FFA, EBA, and PPA in healthy, typically developing 7- to 11-year-old children and adults. Our results revealed a right FFA and a bilateral EBA and PPA in the children that were localized in a way consistent with these same regions in adults. In addition, the response profiles of these regions were very similar in adults and children with comparable levels of functional specificity at all of the ages tested. We discuss the implications of this research for understanding abnormal regional specialization for social and nonsocial object categories in individuals with autism spectrum disorders

    Neural Correlates of Fluid Reasoning in Children and Adults

    Get PDF
    Fluid reasoning, or the capacity to think logically and solve novel problems, is central to the development of human cognition, but little is known about the underlying neural changes. During the acquisition of event-related fMRI data, children aged 6–13 (N = 16) and young adults (N = 17) performed a task in which they were asked to identify semantic relationships between drawings of common objects. On semantic problems, participants indicated which of five objects was most closely semantically related to a cued object. On analogy problems, participants solved a visual propositional analogy (e.g., shoe is to foot as glove is to…?) by indicating which of four objects would complete the problem; these problems required integration of two semantic relations, or relational integration. Our prior research on analogical reasoning in adults implicated left anterior ventrolateral prefrontal cortex (VLPFC) in the controlled retrieval of individual semantic relationships, and rostrolateral prefrontal cortex (RLPFC) in relational integration. In this study, age-related changes in the recruitment of VLPFC, temporal cortex, and other cortical regions were observed during the retrieval of individual semantic relations. In contrast, age-related changes in RLPFC function were observed during relational integration. Children aged 6–13 engage RLPFC too late in the analogy trials to influence their behavioral responses, suggesting that important changes in RLPFC function take place during adolescence

    Flexible rule use: Common neural substrates in children and adults

    Get PDF
    AbstractFlexible rule-guided behavior develops gradually, and requires the ability to remember the rules, switch between them as needed, and implement them in the face of competing information. Our goals for this study were twofold: first, to assess whether these components of rule-guided behavior are separable at the neural level, and second, to identify age-related differences in one or more component that could support the emergence of increasingly accurate and flexible rule use over development. We collected event-related fMRI data while 36 children aged 8–13 and adults aged 20–27 performed a task that manipulated rule representation, rule switching, and stimulus incongruency. Several regions – left dorsolateral prefrontal cortex (DLPFC), left posterior parietal cortex, and pre-supplementary motor area – were engaged by both the rule representation and the rule-switching manipulations. These regions were engaged similarly across age groups, though contrasting timecourses of activation in left DLPFC suggest that children updated task rules more slowly than did adults. These findings support the idea that common networks can contribute to a variety of executive functions, and that some developmental changes take the form of changes in temporal dynamics rather than qualitative changes in the network of brain regions engaged

    Maturing Thalamocortical Functional Connectivity Across Development

    Get PDF
    Recent years have witnessed a surge of investigations examining functional brain organization using resting-state functional connectivity MRI (rs-fcMRI). To date, this method has been used to examine systems organization in typical and atypical developing populations. While the majority of these investigations have focused on cortical–cortical interactions, cortical–subcortical interactions also mature into adulthood. Innovative work by Zhang et al. (2008) in adults have identified methods that utilize rs-fcMRI and known thalamo-cortical topographic segregation to identify functional boundaries in the thalamus that are remarkably similar to known thalamic nuclear grouping. However, despite thalamic nuclei being well formed early in development, the developmental trajectory of functional thalamo-cortical relations remains unexplored. Thalamic maps generated by rs-fcMRI are based on functional relationships, and should modify with the dynamic thalamo-cortical changes that occur throughout maturation. To examine this possibility, we employed a strategy as previously described by Zhang et al. to a sample of healthy children, adolescents, and adults. We found strengthening functional connectivity of the cortex with dorsal/anterior subdivisions of the thalamus, with greater connectivity observed in adults versus children. Temporal lobe connectivity with ventral/midline/posterior subdivisions of the thalamus weakened with age. Changes in sensory and motor thalamo-cortical interactions were also identified but were limited. These findings are consistent with known anatomical and physiological cortical–subcortical changes over development. The methods and developmental context provided here will be important for understanding how cortical–subcortical interactions relate to models of typically developing behavior and developmental neuropsychiatric disorders
    corecore