2 research outputs found

    Sensitivity-Based Adaptive SRUKF for State, Parameter, and Covariance Estimation on Mechatronic Systems

    Get PDF
    Since the initial developments in the state-space theory in the 1950s and 1960s, the state estimation has become an extensively researched and applied discipline. All systems that can be modelled mathematically are candidates for state estimators. The state estimators reconstruct the states that represent internal conditions and status of a system at a specific instant of time using a mathematical model and the information received from the system sensors. Moreover, the estimator can be extended for system parameter estimation. The resulting Kalman filter (KF) derivatives for state and parameter estimation also require knowledge about the noise statistics of measurements and the uncertainties of the system model. These are often unknown, and an inaccurate parameterization may lead to decreased filter performance or even divergence. Additionally, insufficient system excitation can cause parameter estimation drifts. In this chapter, a sensitivity-based adaptive square-root unscented KF (SRUKF) is presented. This filter combines a SRUKF and the recursive prediction-error method to estimate system states, parameters and covariances online. Moreover, local sensitivity analysis is performed to prevent parameter estimation drifts, while the system is not sufficiently excited. The filter is evaluated on two testbeds based on an axis serial mechanism and compared with the joint state and parameter UKF

    Hopping, Landing, and Balancing with Springs

    Get PDF
    This work investigates the interaction of a planar double pendulum robot and springs, where the lower body (the leg) has been modified to include a spring-loaded passive prismatic joint. The thesis explores the mechanical advantage of adding a spring to the robot in hopping, landing, and balancing activities by formulating the motion problem as a boundary value problem; and also provides a control strategy for such scenarios. It also analyses the robustness of the developed controller to uncertain spring parameters, and an observer solution is provided to estimate these parameters while the robot is performing a tracking task. Finally, it shows a study of how well IMUs perform in bouncing conditions, which is critical for the proper operation of a hopping robot or a running-legged one
    corecore