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Abstract

Since the initial developments in the state-space theory in the 1950s and 1960s, the state
estimation has become an extensively researched and applied discipline. All systems
that can be modelled mathematically are candidates for state estimators. The state
estimators reconstruct the states that represent internal conditions and status of a system
at a specific instant of time using a mathematical model and the information received
from the system sensors. Moreover, the estimator can be extended for system parameter
estimation. The resulting Kalman filter (KF) derivatives for state and parameter estimation
also require knowledge about the noise statistics of measurements and the uncertainties of
the system model. These are often unknown, and an inaccurate parameterization may
lead to decreased filter performance or even divergence. Additionally, insufficient system
excitation can cause parameter estimation drifts. In this chapter, a sensitivity-based adap-
tive square-root unscented KF (SRUKF) is presented. This filter combines a SRUKF and
the recursive prediction-error method to estimate system states, parameters and covari-
ances online. Moreover, local sensitivity analysis is performed to prevent parameter estima-
tion drifts, while the system is not sufficiently excited. The filter is evaluated on two testbeds
based on an axis serial mechanism and compared with the joint state and parameter UKF.

Keywords: Unscented Kalman, filter, recursive prediction-error method, state
estimation, parameter estimation, covariance estimation, sensitivity analysis

1. Introduction

State estimation is applicable to almost all areas of engineering and science. It is interesting to

engineers for different reasons such as the control of a system using a state-feedback controller or

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



monitoring the system states that are not measureable with sensors, or the sensors are too

expensive or too difficult to install. The system states can be defined as variables, which provide

a representation of internal conditions and status of a system at a specific instant of time. Applica-

tions that include a mathematical model of any system are candidates for state estimation. The

estimations can be useful, for example, car assistance systems [1], predictive maintenance [2],

structure health estimation [3], and many other applications (see [4] and references therein).

Different algorithms were proposed for online state estimation. A historical survey of the

filtering algorithms can be found in [5]. The Kalman filter (KF) was presented in [6] and

nowadays is the most widely applied algorithm for state estimation on linear systems. The KF

is a linear optimal estimator [7]. This means that the KF is the best filter that uses a linear

combination of the system measurements and states in order to estimate the last ones. The

main operation of the KF is the propagation of the mean and covariance of the (Gaussian)

random variables (RVs) through time. The KF assumes that the model and the noise statistics

affecting the system are known. Otherwise, the estimates can degrade.

Different derivatives of the KF have been developed for nonlinear systems during the last

decades. The extended Kalman filter (EKF) presented in [8] is the most commonly used

estimator for nonlinear system. This filter linearizes the system and measurement equations

at the current estimate. This may lead to poor performances for highly nonlinear or highly

noisy systems [9]. To address the linearization errors of the EKF, the unscented Kalman filter

(UKF) was presented in [10]. This filter uses the unscented transformation (UT) to pick a

minimal set of points around the mean of the GRV. These points capture the true mean and

covariance of the GRV, and they are then propagated through the true nonlinear function

capturing the a posteriori mean and covariance more accurately.

The mathematical models usually describe the behaviour of the systems, and generally the

structure and the parameters need to be determined. Once the structure is defined, system

inputs and measurements can be used to identify the model parameters. This can be

performed offline [11, 12]. However, the parameters usually may vary during operations. In

order to monitor these variations online, the nonlinear extensions of the KF can be extended for

parameter estimation [9].

The KF derivatives can only achieve good performances under a priori assumptions, for exam-

ple, accurate systemmodels, noise statistics knowledge, and proper initial conditions [7, 9, 13]. If

one of these assumptions is not guaranteed, the KF derivative can potentially become unstable

and the estimations can be diverged [14–16]. Moreover, tuning the performance of these filters

implies primarily adjusting the process and measurement noise covariances to match the

(unknown) real-system noise statistics. In the last decades, numerous methods were presented

to estimate these unknown covariances. The autocovariance least-square method was presented

in [17, 18], and it was extended (and simplified) in [19], and diagonal process and noise covari-

ances were considered in [20]. This method estimates the noise covariances using least squares

and it can only be used with KF. The method was extended for nonlinear or time-varying

systems using an EKF in [21]. Online covariance estimation for EKF and square-root cubature

Kalman filter (SRCuKF) was presented in [22]. These methods implement a combination of a KF
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derivative and a recursive prediction-error method (RPEM) to estimate covariances online. In

[23], an adaptive UKF was presented to estimate only covariances online.

In this chapter, a sensitivity-based adaptive square-root unscented Kalman filter (SB-aSRUKF)

is presented. This filter estimates system states, parameters and covariances online. Using local

state sensitivity models (SMs), this filter prevents parameter and covariance estimation drifts,

while the system is not sufficiently excited. Sensitivity analysis (SA) for the UKF is also

presented. The performance of this filter is validated in simulations on two testbeds and

compared with the joint UKF for parameter and state estimation.

Section 2 covers some algorithms for recursive estimation of states, parameters, and covari-

ances. The SB-aSRUKF is the main topic of this chapter. This filter uses a KF derivative for state

estimation. In Section 2.1, the KF for state estimation in linear dynamic systems is presented.

The UKF, a nonlinear extension of the KF, is described in Section 2.2 and also extended for

estimating system parameters. Section 2.3 covers parameter estimation using the RPEM. The

UKF and the RPEM are combined in Section 2.4 to obtain the aSRUKF. In order to identify

unknown parameters, the system inputs should be persistently exciting. Sensitivity models

(SMs) are presented in this section and are used to evaluate the system excitation and prevent

parameter estimation drifts while the system is not sufficiently excited.

Section 3 covers the testbed used for the filter evaluations. A planar one-link robot system is

described in Section 3.1, and a pendulum robot (pedubot) is mathematically modelled in

Section 3.2. The first testbed is used for the SM analysis, and the chaotic system is used to

compare the filter performance with the joint SRUKF. The evaluation results of the SB-aSRUKF

are presented in Section 4. The SMs are analysed with different system inputs on the first

testbed in Section 4.1, and the filter performance for state and parameter estimation is com-

pared with the joint SRUKF in Section 4.2. Section 5 completes the chapter with conclusions.

2. Recursive estimation

This section discusses some recursive approaches to estimate states, parameters and covari-

ances of a general system. The KF as the optimal linear estimator for linear dynamic systems is

presented. Nonlinear extensions of the KF are discussed, as well as an extension for parameter

estimation. A recursive Gauss-Newton method for parameter estimation is also presented in

this section. Finally, the last subsection discusses the SB-aSRUKF, which is the main topic of

this chapter, and the SMs that are used for excitation monitoring.

2.1. Kalman filter (KF)

The KF is the most widely applied algorithm for state estimation on linear dynamic systems

that are corrupted by stochastic noises (e.g. Gaussian noise). It uses a parametric mathematical

model of the system and a series of (noisy) measurements from, for example, sensors to

estimate the system states online [4]. In general, the state distribution of a system can be

approximated by random variables (RVs). The main operation of the KF is the propagation of
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the mean and covariance of these (Gaussian) RVs through time. The KF is an optimal linear

filter for these types of systems [7, 9]. It is a recursive algorithm, which enables new measure-

ments to be processed as they arrive to correct and update the state and measurement esti-

mates.

In general, a linear discrete-time system corrupted by additive noises can be written as follows:

xk ¼ Axk�1 þ Buk�1 þwk,

yk ¼ Cxk þDuk þ vk,
(1)

where xk ∈R
nx is the system state vector at discrete time k, and uk ∈R

nu and yk ∈R
ny corre-

spond to the system input and measurement vectors, respectively. The matrices A∈R
nx�nx ,

B∈R
nx�nu , C∈R

ny�nx and D∈R
ny�nu are often called system, input, output and feedforward

matrices, respectively, and describe the system behaviour. The random variable vectorswk and

vk represent the process and measurement noises. These are considered white Gaussian, zero

mean, and uncorrelated and have covariance matrices Qk and Rk, respectively, as

wk ∽N 0;Qkð Þ,

vk ∽N 0;Rkð Þ:
(2)

The KF iterative nature can be separated in twomain steps: the process update and the correction

step. In the process update, based on the knowledge of the system dynamics, the state estimate

(bxþk�1)
1 from the previous time step (k� 1) is used to calculate a new estimate at the current time

(k). This step does not include any information of the system measurements and the resulting

state estimate is called a priori estimate (bx�k ). In the correction step, the a priori estimate is

combined with the current systemmeasurement (yk) to improve the state estimate. This estimate

is called the a posteriori state estimate (bxþk ). The vectors bx�k and bxþk estimate both the same

quantity, but the difference between them is that the last one takes the measurement (yk) into

account. A Kalman gainmatrix (KkÞ is calculated at every discrete step andweights the influence

of the model and the measurements on the current state estimate. This gain is calculated using

the system matrices and the process (Qk) and measurement (Rk) covariances. More information

about the KF equations and generalizations can be found in [4, 7, 9].

The KF is a linear optimal estimator, but it assumes that the system model and noise statistics

are known. Otherwise, the filter estimates can degrade. Tuning the performance of the filter

implies primarily adjusting the process and measurement covariance matrices to match the

(unknown) real-system noise statistics. In practical implementations of the KF, the filter tuning

is performed online, and empirical values are normally used. Extensive research has been done

in this field to estimate the noise covariances from data (see [17–20] and references therein).

As mentioned before, the KF is the optimal linear estimator, which estimates states of a linear

dynamic system using the inputs, measurements and a parametric mathematical model of the

system. Even though many systems are close enough to linear and linear estimators give

1

The hatbover a vector represents the estimate of the vector, for example, bx describes the estimate of the state vector x.
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acceptable results, all systems are ultimately nonlinear. Extensions of the KF have been

presented in the last decades to deal with nonlinear systems. Some examples are the EKF and

the sigma-point Kalman filters (SPKFs).

2.2. Nonlinear filtering

The EKF and the UKF (a SPKF type) are derivatives of the KF for nonlinear systems. The EKFwas

originally proposed in [8] and is themost commonlyapplied state estimator for nonlinear systems.

However, if the system nonlinearities are severe or the noises affecting the system are high, the

EKF can be difficult to tune, often gives wrong estimates and can lead to filter divergence easily.

This is because the EKF uses linearized system and measurement models at the current estimate

and propagates the mean and covariance of the GRVs through these linearizations. The UKF was

presented in [10] and addresses the deficiencies of the EKF linearization providing a direct and

explicit mechanism for approximating and transforming themean and covariance of the GRVs.

In general, a discrete-time state-space model of a nonlinear system can be described by

xk ¼ f xk�1;θk�1; uk�1ð Þ þwk�1,

yk ¼ h xk;θk; ukð Þ þ vk,
(3)

where θk ∈R
np is the (unknown) parameter vector and f and h are arbitrary vector-valued

functions usually called system and measurement functions. As a KF derivative, the UKF aim

is to minimize the covariance of the state estimation error to find an optimal estimation of the

state true dynamic probability density function (pdf). The main component of this filter is the

UT. This transformation uses a set of appropriately selected weighted points to parameterize

the mean and covariance of the pdf. Two steps characterize also the UKF. In the process

update, the sigma points are calculated and then propagated through the nonlinear system

functions to recover the mean and covariance of the new a priori estimates. The estimated

measurement (byk) is calculated in the correction step and together with the actual measure-

ment are used to correct the a priori estimate. This results in the a posteriori state estimate.

While the UKF matches the true mean of xk correctly up to the third order, the EKF only

matches up to the first order. Both filters approximate the true covariance of xk up to the third

order. However, the UKF correctly approximates the signed of the terms to the fourth power

and higher meaning that the resulting error should be smaller [7, 9].

The nonlinear extensions of the KF can also estimate the unknown parameters of a system. The

UKF was extended for joint state and parameter estimation in [24]. In this case, the system state

vector xk was extended by including the unknown parameters θk to obtain a joint state and

parameter vector as

~xk ¼
xk

θk

� �
, (4)

remaining θk ¼ θk�1 during the process update.

Square-root (SR) filtering increases mathematically the precision of the KF when hardware

precision is not available. In [25], an SR version of the UKF was presented, which uses linear
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algebra techniques such as the QR decomposition and the Cholesky factor [26] to calculate the

SR of the estimation error covariance. The SR form improves the numerical stability of the filter

and guarantees positive semi-definiteness of this covariance. Additionally, the computational

complexity for state and parameter estimation is reduced [25].

2.3. Recursive prediction-error method

In this section, the recursive prediction-error method (RPEM) is briefly discussed. This method

is extensively analysed in [11, 12] and uses a parameterized predictor that estimates the system

outputs at the current time step. The resulting predicted system output is then compared to the

actual system measurement, and the predictor parameters are corrected such as that the

prediction error is minimized.

The quadratic criterion function defined as

Vk θkð Þ ¼
1

2
eTk θkð ÞΛ�1ek θkð Þ, (5)

is minimized using the stochastic Gauss-Newton method in order to obtain the predictor

parameters. The prediction error ek θkð Þ at the discrete time k is described as

ek θkð Þ ¼ y
k
� by

k
θkð Þ, (6)

where y
k
corresponds to the actual system measurement, by

k
θkð Þ refers to the parameterized

predictor output using parameter set θk and Λ is a user-defined weight factor.

The recursive solution that minimizes the quadratic criterion function in Eq. (5) is given by the

following scheme:

Δk ¼ Δk�1 þ 1� λð Þ eke
T
k � Δk�1

� �
,

Sk ¼ λΔk þ
dby

k

dbθk�1

Θk�1
dbyT

k

dbθk�1

,

Lk ¼ Θk�1
dbyT

k

dbθk�1

S�1
k ,

Θk ¼ Inθ � Lk

dby
k

dbθk�1

 !

Θk�1 Inθ � Lk

dbyT
k

dbθk�1

 !

=λþ LkΔkL
T
k ,

bθk ¼ bθk�1 þ Lkek:

(7)

The user-defined parameter 0 < λ ≤ 1 is often called the forgetting factor. The matrix Δk is

calculated using the prediction error. This matrix is used to calculate Sk, where the derivative

of the output w.r.t. to the unknown parameter vector
dby

k

dbθk�1

� �
appears. The gain vector Lk is

multiplied by the innovation error to update then the parameter estimation. It should be noted

that besides the matrix by
k
¼

dby
k

dbθk�1

, all parameters, vectors, and matrices are defined after an

initialization. The matrix by
k
can be calculated modifying a KF derivative.
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The selection of the forgetting factor essentially defines the measurements that are relevant for

the current estimation of the parameter predictor. The most common choice is to take a

constant forgetting factor for systems that change gradually. Other criterions for selection of

this factor and the convergence of the RPEM are discussed extensively in [11, 12].

2.4. Sensitivity-based adaptive square-root Kalman filter

This is the main section of this chapter. The earlier sections were written to provide the needed

methods for this section, and the later sections are written to analyse and test the performance

of the filter described in this section.

The aSRUKF is discussed in this section. This filter combines the SRUKF and the RPEM. While

the KF derivative estimates the system states and measurements, the RPEM calculates the

unknown parameters and covariances.

In this filter, the innovation error in Eq. (6) is calculated and minimized using the recursive

scheme presented in Eq. (7) in order to estimate the unknown system parameters and covari-

ances. Besides the matrix byk, all parameters, vectors, and matrices of the recursive scheme are

defined. The derivative of the estimated measurement (bykÞ w.r.t. the vector (bθk�1Þ containing

the unknown values of parameters and covariances needs to be calculated. This matrix is also

called the output sensitivity and describes the influence of a variation of a parameter on the

system output. The output sensitivity can be obtained using a KF derivative.

The equations of a SRUKF are then extended in order to calculate the output sensitivity. To

simplify the reading flow, the following definitions are presented:

wm
i ¼ wc

i ¼
1

2 nx þ λf

� � , i ¼ 1,…, m ¼ 2nx, λf ¼ α2 nx þ κð Þ,

wm
0 ¼

λf

2 nx þ λf

� � , wc
0 ¼ wm

0 þ 1� α2 þ β
� �

, η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nx þ λf

p
,

m1 ¼ 11,nx , m2 ¼ 11, l, l ¼ 2nx þ 1,

wc ¼ wc
0;…;wc

m

� �
, wm ¼ wm

0 ;…;wm
m

� �
, Wc

kr ¼ wc ⨂ mT
1 ,

(8)

where wm,c
i are a set of scalar weights, α determines the spread of sigma points around the

estimated state bxk, β incorporates information about the noise distribution (e.g. β ¼ 2 assumes

that the system is affected by Gaussian noise), and κ is a scaling factor, which can be used to

reduce the higher-order errors of the mean and covariance approximations [9]. The Kronecker

product [27] is described by ⨂ .

The process update step of the aSRUKF is presented in Table 1. After the filter initialization,

the sigma points (Xk�1) that describe the pdf of the state estimate are calculated using the UT.

At the same time, the sigma-point derivatives (Φk�1) are also obtained. The sigma points and

its derivatives are propagated through the system function and the system derivative function,

respectively, to obtain the a priori state estimate (bx�k ) and the a priori state estimate sensitivity

( bX �
k ). Considering additive process noises, the SR factor of the estimation error covariance

(S�xx,k) is calculated using the QR decomposition (qrðÞ) and the rank-one update to Cholesky
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factorization (cholupdateðÞ 2) in which the signum function (signðÞ) is used to determine the

sign of the first calculated weight factor. If the weight factor results negative, a Cholesky

downdate takes place; otherwise, a Cholesky update occurs. The next step calculates the

derivative of the SR factor of the estimation error covariance (S�
xx,k). In this step, the function

treshapeMðÞ is used. This function converts a vector of dimension nx nx þ 1ð Þ=2ð Þnθ � 1ð Þ into a

nx � nxnθð Þ matrix with nθ lower triangular blocks of size (nx � nxÞ. Additionally, the operator

ðÞs is utilized to stack the matrix columns to form a column vector. Further information about

this step can be found in [28].

aSRUKF Initialization bx0 ¼ xinit ∈R
nx , bθ0 ¼ θinit ∈R

nθ , Syy:k ¼
dSyy,k
dθk

, Θk ¼ Θinit ∈R
nθ�nθ

Pxx,k ¼
dPxx,k

dθk
, Pyy,k ¼

dPyy,k

dθk
, Sxx:k ¼

dSxx,k
dθk

, Δk ¼ 0∈R
ny�ny ,

Pxx,0 ¼ Sxx,0S
T
xx,0 ¼ Pxx, init ∈R

nx�nx ,

Pxx,0 ¼ Sxx,0 ¼ 0∈R
nx�nxnθ , Pyy,0 ¼ Syy,0 ¼ 0∈R

ny�nynθ

SRUKF Sigma points Xk�1 ¼ Xk�1,1 ;…;Xk�1, lð Þ ¼ bx k�1bxk�1 ⨂ m1 þ ηSxx,k�1bx k�1 ⨂ m1 � ηSxx,k�1

� �

Sigma-points

propagation
X∗

k ¼ f Xk�1 ; bθ k�1 ; uk�1

� �

SM Sigma-point

derivatives
Φk�1, j ¼ Φk�1,1, j ;…;Φk�1, l, j

� �
¼

dXk,1

dbθ k, j
;…;

dXk,m

dbθ k, j

� �
¼ bX k�1, j

bX k�1, j ⨂ m1 þ ηSxx,k�1, j
bX k�1, j ⨂ m1 � ηSxx,k�1, j

� �

with

bX k�1 ¼
dx̂ k�1

dθ̂ k�1

Sensitivity

propagation
Φ

∗

k, j, i ¼
∂f
∂xk

			
Xk�1 , θ̂ k�1

Φk�1, j, i þ
∂f

∂θk, j

			
Xk�1 , θ̂ k�1

SRUKF A priori state

estimate
bx�
k ¼ X∗

k wmð ÞT

SR estimation

error covariance
S�xx,k ¼ qr

ffiffiffiffiffiffi
wc

1

p
X∗

1:2nx ,k
� bx�

k

� �
SQ,k

� �� �
,

S�xx,k ¼ cholupdate S�xx,k ;
ffiffiffiffiffiffiffiffiffi
wc

0

		 		
q

X∗

0,k � bx�

k

� �
; sign wc

0

� �� �

SM A priori

state sensitivity
cX �

k ¼ Φ
∗

k Inθ ⨂ wmð ÞT
� �

Derivative of

estimation error

covariance

S�
xx,k ¼ treshapeM Inθ ⨂ A†

ls,S�xx, k

� �
P�

xx,k

� �

s

� �
,

with

Als,S�xx,k
¼ S�xx,k ⨂ Inx þ Inx ⨂ S�

xx,k

� �
N nxð Þ

� �
ÞE nxð Þ and

P�
xx,k ¼ Φ

∗

k �
cX

�

k ⨂ m2

� �
Inθ ⨂ Wc

kr

� �T
⨀ X∗

k � bx�
k ⨂ m2

� �T� �� �

þWc
kr⨀ X∗

k � bx�
k ⨂ m2

� �
T lð ÞI

nθ ⨂ Φ
∗

k �
cX

�

k ⨂ m2

� �T
� �

þ
dQk

dθk

				bθ k�1

in which T lð Þ ¼ I0 ;T1;…;Tnθ

� �
, and T ¼ 0

l�l
1 ;…; 0l�l

nθ
; Il

� �
.

Further details of the construction of the matrix N nxð Þ and the elimination matrix E nxð Þ can be found in [28]

Table 1. aSRUKF: filter initialization, sigma-points calculation and filter process update step. The Kronecker product is

described by ⨂ and ⨀ defines the element-wise multiplication. The ð Þs operator stacks the matrix columns to form a

column vector.

2

Matlab does not allow the use of cholupdateðÞ in real-time applications; using coder:extrinsic 0cholupdate0
� �

, it is possible

to use the function in Simulink but the application does not run in real time. The cholupdateðÞ line can be replaced with

chol S�xx,k

� �T
S�xx,k þ wc

0 X∗

0,k � bx�

k

� �� �
.
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The correction step is shown in Table 2. A new set of sigma points (X�
k ) and its derivatives

(Φk) can be generated using steps (a) and (b) from Table 2. If the nonlinearity is not severe,

these steps can be skipped. This saves computational effort but sacrifices filter performance.

The (new) sigma points and its derivatives are then propagated through the measurement

function and its derivative, respectively. The resulting points are used to calculate the esti-

mated measurements (Yk) as well as the output sensitivities (byk). These are used within the

RPEM to estimate the system parameters and covariances.

The SR factor of the innovation error covariance (Syy,k), the cross-covariance (Pxy,k) together with

its derivatives matrices (Syy,k, Pxy,k) are calculated in order to obtain the Kalman gain matrix

(Kk) and its sensitivity (Kk). The aSRUKF treats also the measurement noises as additive. The a

posteriori state estimation (bxþk ), the a posteriori state sensitivity ( bX þ
k ) together with the SR factor

of the estimation error covariance (Sxx,k) and its sensitivity (Sxx,k) close the loop of the aSRUKF.

Local sensitivity analysis can be utilized to determine if a system input or a system modifica-

tion can excite the system parameters in order to identify them. The a posteriori state sensitiv-

ity from Table 2 (d) can be used to determine the influence of parameters to the system states.

This sensitivity results from the correction step of the aSRUKF. As long as the sensitivity bX þ
k

remains below a user-defined threshold, the parameter update from Table 2 (e) can be skipped

to prevent parameter estimation drifts. A time window Nwð Þ can be used to calculate

max bX
þ

k�Nw









2
;…; bX

þ

k









2

� �
to normalize the sensitivity values. A threshold vector tv is then

defined with values between 0 and 1. The update procedure can be described as

for p ¼ 1 to nθ do

sa ¼ 0

for n ¼ 1 to nx do

sa ¼ saþ
dxk, n
dθk, p

if sa > tv pð Þ then

update_values ¼ True

(9)

The variable sa represents the sensitivity sum w.r.t. a system parameter θk,p over all system

states (xk,1,…, xk,nxÞ. The threshold vector tv should be selected with caution. Too high values

prevent parameter estimation drifts but can increase the convergence time of the filter. More-

over, the parameter excitation can be significantly reduced and the resulting estimation can be

biased. The performance of the SB-aSRUKF is evaluated in Section 4.

The local state sensitivity can be also calculated as follows (cf. [29]):

dxk
dθk, j

¼
∂f

∂xk

				bxk�1 ,
bθk�1

dxk�1

dθk, j
þ

∂f

∂θk, j

				
bxk�1,

bθk�1

(10)

This sensitivity computation is compared in Section 4 with a posterior state sensitivity obtained

using the SB-aSRUKF.
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SRUKF Sigma points X�
k ¼ Xk,1;…;Xk, lð Þ ¼ bx �

k bx�
k ⨂ m1 þ ηS�xx,kbx�

k ⨂ m1 � ηS�xx,k�1

� �
(a)

Output sigma points Yk ¼ h X�
k ;

bθk�1; uk

� �

Estimated measurement byk ¼ Yk wmð ÞT

SM Sigma-points derivative
Φk, j ¼ Φk,1, j;…;Φk, l, j

� �
¼¼ bX k, j

bX k, j ⨂ m1 þ ηS�
xx,k, j

bX k, j ⨂ m1 � ηS�
xx,k, j

� �
(b)

Output

sigma-points derivative
Ψk, j, i ¼

∂h
∂xk

			
X�

k ,
bθ k�1

Φk, j, i þ
∂h

∂θk, j

			
X�

k ,
bθ k�1

Output sensitivity byk ¼ Ψk Inθ ⨂ wmð ÞT
� �

with

Ψk ¼ Ψk,1;…;Ψk,nθð Þ

(c)

SRUKF SR innovation error

covariance
Syy,k ¼ qr

ffiffiffiffiffiffi
wc

1

p
Y1:2nx ,k � byk

� �
SR,k

� �� �
,

Syy,k ¼ cholupdate Syy,k;
ffiffiffiffiffiffiffiffiffi
wc

0

		 		
q

Y0,k � byk

� �
; sign wc

0

� �� �

Cross-covariance matrix Pxy,k ¼ Wc
kr⨀ Yk � byk ⨂ m2

� �
Xk � bx�

k ⨂ m2

� �T� �

SM Derivative of innovation

error covariance
Syy,k ¼ treshapeM Inθ ⨂ A†

ls,Syy,k

� �
Pyy,k

� �
s

� �
, with

Als,Syy,k ¼ Syy,k ⨂ Iny þ Iny ⨂ Syy,k

� �
N nyð Þ

� �
ÞE nyð Þ and

Pyy,k ¼ Ψk � byk ⨂ m2

� �
Inθ ⨂ Wc

kr

� �T
⨀ Yk � byk ⨂ m2

� �T� �� �

þWc
kr⨀ Yk � byk ⨂ m2

� �
T lð ÞI

nθ ⨂ Ψk � byk ⨂ m2

� �T� �

Derivative of Cross-

covariance matrix
Pxy,k ¼ Φk � bX

�

k ⨂ m2

� �
Inθ ⨂ Wc

kr

� �T
⨀ Yk � byk ⨂ m2

� �T� �� �

þWc
kr⨀ Xk � bx�

k ⨂ m2

� �
T lð ÞI

nθ ⨂ Ψk � byk ⨂ m2

� �T� �

SRUKF Kalman gain Kk ¼ Pxy, k=S
T
yy

� �
=Syy, k

A posteriori state estimate bxþ
k ¼ bx�

k þ Kk yk � by
k

� �

SR estimation error

covariance

for z ¼ 1 to ny do

Sxx,k ¼ cholupdate S�xx,k;Uk :; zð Þ, 0�0
� �

with Uk ¼ KkSyy,k

SM Kalman gain derivative Kk ¼ Pxy,k= Inθ ⨂ Pyy, k

� �
� Pxy,k=Pyy,k

� �
Pyy,k= Inθ ⨂ Pyy, k

� �� �

A posteriori state sensitivity bX þ
k ¼ bX �

k � Kkbyk þKk Inθ ⨂ yk � by
k

� �� �
(d)

Derivative of estimation

error covariance update
Sxx,k ¼ treshapeM Inθ ⨂ A†

ls,S�xx,k

� �
Pxx,kð Þs

� �
, with

Pxx,k ¼ P�
xx,k � Pxy,kT nyð Þ Inθ ⨂ KT

k

� �
�Pxy,k Inθ ⨂ KT

k

� �

RPEM Parameter and covariance

estimation
Δk ¼ Δk�1 þ 1� λð Þ eke

T � Δk�1

� �
,

Sk ¼ λΔk þ bykΘk�1byT
k ,

Lk ¼ Θk�1 byT
k S�1

k ,

Θk ¼ Inθ � Lkbyk

� �
Θk�1 Inθ � Lkby

T
k

� �
=λþ LkΔkL

T
k ,

bθk ¼ bθk�1 þ Lkek:

(e)

Table 2. aSRUKF: filter correction step and the RPEM for parameter and covariance estimation.
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The RPEM can be combined with different KF derivatives to estimate system parameters and

covariances. An EKF and a SRCuKF were used to calculate the output sensitivity in [22], which

is then used to estimate the unknown values. More information about the aSRUKF can be

found in [28, 30].

3. Testbeds

In this section, two testbeds are presented and modelled. These modelled systems are used in

Section 4 to test the performance of the SB-aSRUKF. The planar one-link robot system is

presented and extended with a second arm to form a pendulum robot (pendubot). The

pendubot is a chaotic and inherently unstable system.

3.1. Planar one-link robot system

This section describes the planar one-link robot system shown in Figure 1. It consists of a long

rectangular aluminium link driven by a DC motor via a shaft and a one-state toothed gear.

The angular position is measured with an incremental rotary encoder and the motor torque is

determined by measuring the motor current. To simplify the motor model, it is assumed that

the motor current is directly proportional to the armature current and that the motor torque is

proportional to this current by a constant factor. Additionally, the link acceleration is measured

using a micro-electro-mechanical sensor (MEMS) accelerometer attached to the link. The motor

position is controlled by a classical cascade structure with P- and P-feedback controllers for

position and speed.

The corresponding continuous state-space representation of the planar one-link robot system,

where the link angular position and acceleration are measured, can be written as follows:

Figure 1. Planar one-link robot system: structure and functionality.
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_x ¼ Axþ b x; uð Þ,

y ¼ c x; uð Þ:

The system states are the link angular position (x1 ¼ q1) and the link speed (x2 ¼ _q1Þ. The input

u corresponds to the motor torque (u ¼ τm). The measurements are the link angular position

(y1 ¼ q1) and acceleration (y2 ¼ €q1). The matrix A and the vector-valued functions b and c are

then described as

A ¼

0 1

0 �
μv

Jtot

0

@

1

A,

b x; uð Þ ¼

0

�
μd

Jtot
arctan k x2ð Þ �

mal2
2 Jtot

sin x1ð Þ þ
τm

Jtot

0

B

@

1

C

A
,

c x; uð Þ ¼

x1

�
μv

Jtot
x2 �

μd

Jtot
arctan k x2ð Þ �

mal2 g

2 Jtot
sin x1ð Þ þ

τm

Jtot

0

B

@

1

C

A
,

where Jtot represents the total inertia including motor, shaft and link inertias. The link friction

is modelled as a dry Coulomb (μd and k) and viscous friction (μvÞ. The parameters ma, l2, and g

are the link mass, length, and the gravity of Earth coefficient, respectively.

3.2. Pendubot

This section describes the pendulum robot (pendubot) that is presented in Figure 2. The

pendubot is built adding an under-actuated link to the planar one-link robot system described

in Section 3.1. The actuated joint (q1) is located at the shoulder of the first link (arm) and the

elbow joint (q2) allows the second link (forearm) to swing free. This joint contains only a second

incremental rotatory encoder that measures the angle between the two links.

The system states result as x1 ¼ q1, x2 ¼ _q1, x3 ¼ q2, and x4 ¼ _q2, where qi and _q i are the

corresponding position and speed of the i–joint, respectively. The state-space representation

of the pendubot can be written as

_x ¼ Axþ b x; uð Þ,

y ¼ x1; x3; _x2ð ÞT,

in which

A ¼

0 1 0 0

0 0 0 0

0

0

0

0

0

0

1

0

0

B

B

B

B

B

@

1

C

C

C

C

C

A

,

b x; uð Þ ¼ 0 _x2 0 _x4ð ÞT,
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where

_x2

_x4

� �

¼ €q ¼
€q1
€q2

� �

¼ D qð Þ�1 τm � μv1
_q1 � d _q1

� �

μv2
_q2

 !

�D qð Þ�1C q; _qð Þ _q �D qð Þ�1g qð Þ.

The viscous and Coulomb frictions are described with the parameters μv1
and μv2

and the

function d _q1
� �

¼ μdarctan k _q1
� �

. The matrices D qð Þ and C q; _qð Þ and the vector g qð Þ are the

inertial and the Coriolis matrices and the gravity vector, respectively. They are defined as

follows

D qð Þ ¼

ϑ1 þ ϑ2 þ 2ϑ3 cos q2
� �

ϑ2 þ ϑ3 cos q2
� �

ϑ2 þ ϑ3 cos q2
� �

ϑ2

0

B

@

1

C

A
,

C q; _qð Þ ¼ ϑ3 sin q2
� �

� _q2 � _q1 � _q2

_q1 0

0

@

1

A,

g qð Þ ¼
ϑ4 g cos q1

� �

þ ϑ5 g cos q1 þ q2
� �

ϑ5 g cos q1 þ q2
� �

0

@

1

A,

where the ϑi parameters are defined as

ϑ1 ¼ m1l
2
1 þ m2 þm3 þm4ð Þl22 þ J1,

ϑ2 ¼ m2l
2
3 þm4l

2
4 þ J2,

ϑ3 ¼ m2l3 þm4l4ð Þ l2,

Figure 2. Pendubot: structure and functionality.
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ϑ4 ¼ m1l1 þ m2 þm3 þm4ð Þl2,

ϑ5 ¼ m2l3 þm4l4:

The parameters J1 and J2 correspond to the moments of inertia of link 1 and link 2 about their

centroids. J1 includesmotor, gear and shaft inertias. Themi and li parameters are defined in Figure 2.

4. Experiments

In this section, the SB-aSRUKF is tested on the planar one-link robot system and on the

pendubot. Both testbed models were discretized using first-order explicit Euler with a sample

time of 0:2 ms. System states, parameters and covariances were estimated online. The SB-

aSRUKF is also compared with the joint state and parameter SRUKF in this section. Sensitivity

analysis is also discussed.

4.1. State sensitivity analysis and parameter and covariance estimation

Sensitivity analysis (SA) was performed on simulation using the planar one-link robot system.

The system parameters were identified offline on the real testbed using Prediction-Error

Method. The parameters defined as

bθtrue¼ bJ tot
bμv bμd bma

bl2 bk
� �T

¼ 5:59∙10�2kg m2 0:05 N m s
rad 0:27 N m 0:11 kg m 10 s

rad

� �T
,

were used for the simulation. Noise distributions with the following covariance matrices

Q ¼ diag 10�11 5∙10�5
� �� �3

,

R ¼ diag 5∙10�7 5
� �� �

,

were added to the simulation to incorporate model and measurement uncertainties. An s-

curve profile was considered as a desired link angular position.

The following system states, parameters and covariances were estimated:

x1 ¼ q1 ! link position,

x2 ¼ _q1 ! link speed,

θa ¼ q11 ! process covariance value related to the link ang:pos:
� �

,

θ1 ¼ μv ! viscous friction coefficient,

θ2 ¼ μd ! Coulomb friction coefficient,

θ3 ¼ J�1
tot ! inverse inertia:

3

The function diag vð Þ transforms the v∈Rn vector into a n� nð Þ square matrix with the elements of v on the diagonal of

the matrix.
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The remaining tuning factors for SB-aSRUKF were set as

Q ¼ q22 ¼ 5∙10�5, R ¼ diag 5∙10�7 2∙101
� �� �

,

α ¼ 0:08 β ¼ 2 κ ¼ 3� nx λ ¼ 0:999,

Pxx, init ¼ I
2, Θinit ¼ diag 5∙10�13 10�1 10�6 10�4 10�8

� �� �
:

The values of Θinit tune the parameter and covariance estimation, and the index order is the

same as the above-defined θi values. This means that the first value tunes the estimation of θa

(process covariance value), the second value tunes θ1 (viscous friction coefficient) and so on.

The filter initial system states were set to zero and the initial system parameters were set as the

true values multiply by a random factor between 0 < θfactor, i ≤ 10 as

xinit ¼ 0,

θinit ¼ 2∙10�8rad2 1:5 1=bJ tot
� �

3bμv 8bμd 0:25 bma
bl2

� �� �T
:

In order to test the sensitivity-based section of the filter, the link angular position was held at

q1 ¼ π=2 after ca. 11 s for about 4:5 s. At the same time, the system parameters bμv, bμd, and bma

were quadrupled.

Figure 3 compares the a posteriori state sensitivity calculated using the SB-aSRUKF and the

state sensitivity using Eq. (10). The first diagram shows the estimated and true link angular

position of the planar one-link robot system. The following diagrams present the normalized

SA related to the link angular speed (b_q 1Þ and corresponding to the inverse inertia, viscous and

Coulomb friction coefficients, and the link mass and length parameter. While the state sensi-

tivity calculated using Eq. (10) was affected directly by input noises, the a posteriori state

sensitivity provided an almost noise-free estimation. While the SAJ�1
tot maxima were related

with the acceleration (speed-up and brake phases), the SAμv maxima coincided with the link

maximal speed. The SAmal2 was only zero while the arm was crossing the 0 rad position and

the SAμd was the sensitivity value more affected by the system noise. This is caused because

the maximal change rate of arctanðÞ occurs when the argument is near zero. When the link

speed is zero, the added noise varies near this value and its effect is amplified by arctanðÞ.

Figure 4 shows the state, parameter and covariance estimation of the planar one-link robot

system. The aSRUKF was used in two configurations: SB-aSRUKF utilized SA to monitor the

system excitation while aSRUKF did not. After the initialization, the two estimators needed

almost the same time to converge to the offline identified values. The parameters estimated

using the SB-aSRUKF did not diverge while the link position was held. Because two of the

estimated parameters using the aSRUKF diverged, this filter needed more time to converge

after the stop phase. The two filters were able to estimate the link mass and length parameter

during the stop phase. While the viscous and the Coulomb friction coefficients and the inverse

inertia estimated with the SB-aSRUKF remained constant during the stop phase, the aSRUKF

was able to estimate the Coulomb friction with bias (before μv diverged). Because of the added

noise, the parameter was excited and could be identified. This can be seen in the fourth
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diagram of Figure 3. These SA values remained under the threshold used on the SB-aSRUKF

and were filtered. The parameter estimation stayed then constant. It should be noted that the

diagram corresponding to the viscous friction coefficient is zoomed to present the parameter

change, and the oscillations of the aSRUKF are cut. These reached up more than 50 times the

parameter true value.

The SB-aSRUKF was able to estimate the parameters and covariance of the proposed testbed.

The online estimations converged to the offline identified values without bias. The sensitivity-

based approach used as a system excitation monitor prevented parameter estimation drifts

and did not modify the convergence time of the filter.

4.2. Comparison between SB-aSRUKF and joint state and parameter SRUKF

The SB-aSRUKF and the joint SRUKF were compared on the pendubot for state and parameter

estimation. The SB-aSRUKF identified also covariances.

The system parameters were identified offline and used for the simulation as

bθtrue ¼ bϑ1
bϑ2

bϑ3
bϑ4

bϑ5

� �T
¼ 0:339 kg m2 0:0667 kg m2 0:0812 kg m2 0:717 kg m 0:146 kg m

� �T
,

bμv1 bμd
bμv2

bk
� �

¼ 0:09 Nm
s

rad
0:226 Nm 0:003 Nm

s

rad
10

s

rad

� �
:

Figure 3. Sensitivity analysis (SA): comparison between the a posteriori state sensitivity obtained using the SB-aSRUKF

and the resulting using Eq. (10). The desired link position was set as an s-curve between �π=2 and π=2. The link position

was held at π=2 after ca. 11 s for about 4:5 s. The parameter sensitivities are related to the link angular speed (bx2 ¼ b_q 1Þ.
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An s-curve profile was selected as the desired position of the first link. The following states and

parameters were estimated online:

x1 ¼ q1 ! link 1 position,

x2 ¼ _q1 ! link 1 speed,

x3 ¼ q2 ! link 2 position,

x4 ¼ _q2 ! link 2 speed,

θa ¼ q11 ! process covariance related to the link 1 ang:pos:
� �

,

θb ¼ q33 ! process covariance related to the link 2 ang:pos:
� �

,

ϑ1,…,ϑ5 ! pedubot minimal set of parameters:

The values θa and θb, which correspond to the process covariance values, were only estimated

using the SB-aSRUKF. The viscous and Coulomb friction coefficients were identified offline

and remained constant for both filters.

To simulate model and measurement uncertainties, noise distributions with the following

covariance matrices were added to the system for the simulation:

Q ¼ diag 2∙10�10 1:5∙10�7 2∙10�10 1:5∙10�7
� �� �

,

R ¼ diag 5∙10�7 5∙10�7 1
� �� �

:

Figure 4. Planar one-link robot system: parameter and covariance estimation. The SB-aSRUKF uses SA to monitor the

system excitation. The initial parameter θinit was randomly selected. The link position was held after ca. 11 s for about

4:5 s, and simultaneously the system parameters bμv , bμd, and bma were quadrupled.
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The tuning parameters for the joint SRUKF were chosen as

Q01
¼ diag 2∙10�10 1:5∙10�7 2∙10�10 1:5∙10�7

��

10�7 10�7 10�7 5∙10�10 10�10 ÞÞ,

R01 ¼ diag 5∙10�7 5∙10�7 10
� �� �

,

α ¼ 0:85, β ¼ 2, κ ¼ 3� nx � np,

P01 ¼ diag 1 1 1 1 10�3 10�5 10�5 5 1
� �� �

,

and the parameters for the SB-aSRUKF were set as

Q02
¼ diag 1:5∙10�7 1:5∙10�7

� �� �

, Pxx,02 ¼ I4,

R02 ¼ diag 5∙10�7 5∙10�7 10
� �� �

,

α ¼ 0:85, β ¼ 2, κ ¼ 3� nx, λ ¼ 0:999,

Θinit ¼ diag 10�25 10�25 10�7 10�7 10�7 5∙10�10 10�10
� �� �

:

Figure 5. Pendubot: state estimation using the SB-aSRUKF and joint SRUKF. Both filters followed the dynamic of the true

system states without any significant bias.
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The filter initial system states were set to zero and the initial system parameters were set as the

true values multiply by a random factor between 0 < θfactor, i ≤ 5 as

xinit ¼ 0,

θinit1 ¼ 1:5 bϑ 1
1:3 bϑ2 1:5 bϑ3 2 bϑ4 2 bϑ5

� �T
,

θinit2 ¼ 2∙10�10rad2 2∙10�10rad2
θinit1ð ÞT

� �T
:

The first four values of P01 tune the initial state estimation, while the last ones the parameter

estimation. The first two values of Θinit tune the estimation of the covariance values θa and θb

while the last values follow the index order of ϑi defined in Section 3. It should be noted that

the settings related to the state and parameters estimation were equally tuned for both filters.

The state estimation of the pendubot is presented in Figure 5. The SB-aSRUKF was slightly

faster to reach the true system states (cf. diagrams 1 and 4) and after ca. 5 s both filters followed

the dynamic of the true system states without any significant bias.

Figure 6. Pendubot: parameter and covariance estimation using the SB-aSRUKF and joint SRUKF. The SB-aSRUKF was

configured to estimate the system parameters ϑ1 to ϑ5 and the process covariances corresponding to the link positions.

The joint SRUKF estimates only the system parameters. It should be noted that the diagram scales for parameters ϑ4 and

ϑ5 are different between the filters.
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Figure 6 shows the parameter estimation of the pendubot for both filters. Using the same

tuning parameter set, while the SB-aSRUKF estimated the ϑ1 to ϑ5 parameters without bias,

the joint SRUKF estimated ϑ1 to ϑ3 with slight bias, and it was not able to estimate ϑ4 and ϑ5.

These two parameters did not converge to the true system values. It should be noted that the

diagram scales corresponding to parameters ϑ4 and ϑ5 are different between the filters. The

parameter initialization and the tuning settings for the two filters were the same. The SB-

aSRUKF outperforms the joint SRUKF for the parameter estimation of the pendubot.

5. Conclusions

In this chapter, some approaches for state, parameter and covariance estimation were discussed.

Moreover, a sensitivity-based adaptive square-root unscented Kalman filter (SB-aSRUKF) was

discussed and its performance was analysed. This filter estimates system states, parameters and

covariances online. Additionally, sensitivity models were presented and used as system excita-

tion monitor to prevent parameter and covariance estimation drifts while the system excitation

was not sufficient.

Two testbeds based on an axis serial mechanism were modelled and used for testing the

performance of the filter. Two experiments were performed in simulation on these two

testbeds: a state sensitivity analysis and a comparison between the joint state and parameter

square-root unscented Kalman filter (SRUKF) and the SB-aSRUKF. Simulation results show

that the SB-aSRUKF outperforms the joint SRUKF with the same tuning configuration. While

the joint SRUKF did not estimate two of the five parameters correctly, the SB-aSRUKF identi-

fied all the parameters. Moreover, the estimation of covariances reduces the parameter estima-

tion bias. Configuring the right excitation thresholds for the system excitation monitor in

Eq. (9) prevented parameter estimation drifts, while the input was not persistently exciting

and did not only increased but also in some cases reduced the convergence time of the filter.
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