17,135 research outputs found

    HOFA: Twitter Bot Detection with Homophily-Oriented Augmentation and Frequency Adaptive Attention

    Full text link
    Twitter bot detection has become an increasingly important and challenging task to combat online misinformation, facilitate social content moderation, and safeguard the integrity of social platforms. Though existing graph-based Twitter bot detection methods achieved state-of-the-art performance, they are all based on the homophily assumption, which assumes users with the same label are more likely to be connected, making it easy for Twitter bots to disguise themselves by following a large number of genuine users. To address this issue, we proposed HOFA, a novel graph-based Twitter bot detection framework that combats the heterophilous disguise challenge with a homophily-oriented graph augmentation module (Homo-Aug) and a frequency adaptive attention module (FaAt). Specifically, the Homo-Aug extracts user representations and computes a k-NN graph using an MLP and improves Twitter's homophily by injecting the k-NN graph. For the FaAt, we propose an attention mechanism that adaptively serves as a low-pass filter along a homophilic edge and a high-pass filter along a heterophilic edge, preventing user features from being over-smoothed by their neighborhood. We also introduce a weight guidance loss to guide the frequency adaptive attention module. Our experiments demonstrate that HOFA achieves state-of-the-art performance on three widely-acknowledged Twitter bot detection benchmarks, which significantly outperforms vanilla graph-based bot detection techniques and strong heterophilic baselines. Furthermore, extensive studies confirm the effectiveness of our Homo-Aug and FaAt module, and HOFA's ability to demystify the heterophilous disguise challenge.Comment: 11 pages, 7 figure

    Advancing Adversarial Training by Injecting Booster Signal

    Full text link
    Recent works have demonstrated that deep neural networks (DNNs) are highly vulnerable to adversarial attacks. To defend against adversarial attacks, many defense strategies have been proposed, among which adversarial training has been demonstrated to be the most effective strategy. However, it has been known that adversarial training sometimes hurts natural accuracy. Then, many works focus on optimizing model parameters to handle the problem. Different from the previous approaches, in this paper, we propose a new approach to improve the adversarial robustness by using an external signal rather than model parameters. In the proposed method, a well-optimized universal external signal called a booster signal is injected into the outside of the image which does not overlap with the original content. Then, it boosts both adversarial robustness and natural accuracy. The booster signal is optimized in parallel to model parameters step by step collaboratively. Experimental results show that the booster signal can improve both the natural and robust accuracies over the recent state-of-the-art adversarial training methods. Also, optimizing the booster signal is general and flexible enough to be adopted on any existing adversarial training methods.Comment: Accepted at IEEE Transactions on Neural Networks and Learning System

    Machine learning in solar physics

    Full text link
    The application of machine learning in solar physics has the potential to greatly enhance our understanding of the complex processes that take place in the atmosphere of the Sun. By using techniques such as deep learning, we are now in the position to analyze large amounts of data from solar observations and identify patterns and trends that may not have been apparent using traditional methods. This can help us improve our understanding of explosive events like solar flares, which can have a strong effect on the Earth environment. Predicting hazardous events on Earth becomes crucial for our technological society. Machine learning can also improve our understanding of the inner workings of the sun itself by allowing us to go deeper into the data and to propose more complex models to explain them. Additionally, the use of machine learning can help to automate the analysis of solar data, reducing the need for manual labor and increasing the efficiency of research in this field.Comment: 100 pages, 13 figures, 286 references, accepted for publication as a Living Review in Solar Physics (LRSP

    Sparse Model Soups: A Recipe for Improved Pruning via Model Averaging

    Full text link
    Neural networks can be significantly compressed by pruning, leading to sparse models requiring considerably less storage and floating-point operations while maintaining predictive performance. Model soups (Wortsman et al., 2022) improve generalization and out-of-distribution performance by averaging the parameters of multiple models into a single one without increased inference time. However, identifying models in the same loss basin to leverage both sparsity and parameter averaging is challenging, as averaging arbitrary sparse models reduces the overall sparsity due to differing sparse connectivities. In this work, we address these challenges by demonstrating that exploring a single retraining phase of Iterative Magnitude Pruning (IMP) with varying hyperparameter configurations, such as batch ordering or weight decay, produces models that are suitable for averaging and share the same sparse connectivity by design. Averaging these models significantly enhances generalization performance compared to their individual components. Building on this idea, we introduce Sparse Model Soups (SMS), a novel method for merging sparse models by initiating each prune-retrain cycle with the averaged model of the previous phase. SMS maintains sparsity, exploits sparse network benefits being modular and fully parallelizable, and substantially improves IMP's performance. Additionally, we demonstrate that SMS can be adapted to enhance the performance of state-of-the-art pruning during training approaches.Comment: 9 pages, 5 pages references, 7 pages appendi

    Automatic Calibration and Error Correction for Large Language Models via Pareto Optimal Self-Supervision

    Full text link
    Large language models (LLMs) have demonstrated remarkable capabilities out of box for a wide range of applications, yet accuracy still remains a major growth area, especially in mission-critical domains such as biomedicine. An effective method to calibrate the confidence level on LLM responses is essential to automatically detect errors and facilitate human-in-the-loop verification. An important source of calibration signals stems from expert-stipulated programmatic supervision, which is often available at low cost but has its own limitations such as noise and coverage. In this paper, we introduce a Pareto optimal self-supervision framework that can leverage available programmatic supervision to systematically calibrate LLM responses by producing a risk score for every response, without any additional manual efforts. This is accomplished by learning a harmonizer model to align LLM output with other available supervision sources, which would assign higher risk scores to more uncertain LLM responses and facilitate error correction. Experiments on standard relation extraction tasks in biomedical and general domains demonstrate the promise of this approach, with our proposed risk scores highly correlated with the real error rate of LLMs. For the most uncertain test instances, dynamic prompting based on our proposed risk scores results in significant accuracy improvement for off-the-shelf LLMs, boosting GPT-3 results past state-of-the-art (SOTA) weak supervision and GPT-4 results past SOTA supervised results on challenging evaluation datasets

    Biomedical Entity Recognition by Detection and Matching

    Full text link
    Biomedical named entity recognition (BNER) serves as the foundation for numerous biomedical text mining tasks. Unlike general NER, BNER require a comprehensive grasp of the domain, and incorporating external knowledge beyond training data poses a significant challenge. In this study, we propose a novel BNER framework called DMNER. By leveraging existing entity representation models SAPBERT, we tackle BNER as a two-step process: entity boundary detection and biomedical entity matching. DMNER exhibits applicability across multiple NER scenarios: 1) In supervised NER, we observe that DMNER effectively rectifies the output of baseline NER models, thereby further enhancing performance. 2) In distantly supervised NER, combining MRC and AutoNER as span boundary detectors enables DMNER to achieve satisfactory results. 3) For training NER by merging multiple datasets, we adopt a framework similar to DS-NER but additionally leverage ChatGPT to obtain high-quality phrases in the training. Through extensive experiments conducted on 10 benchmark datasets, we demonstrate the versatility and effectiveness of DMNER.Comment: 9 pages content, 2 pages appendi

    Classification of knee osteoarthritis based on quantum-to-classical transfer learning

    Get PDF
    Quantum machine learning takes advantage of features such as quantum computing superposition and entanglement to enable better performance of machine learning models. In this paper, we first propose an improved hybrid quantum convolutional neural network (HQCNN) model. The HQCNN model was used to pre-train brain tumor dataset (MRI) images. Next, the quantum classical transfer learning (QCTL) approach is used to fine-tune and extract features based on pre-trained weights. A hybrid quantum convolutional network structure was used to test the osteoarthritis of the knee dataset (OAI) and to quantitatively evaluate standard metrics to verify the robustness of the classifier. The final experimental results show that the QCTL method can effectively classify knee osteoarthritis with a classification accuracy of 98.36%. The quantum-to-classical transfer learning method improves classification accuracy by 1.08%. How to use different coding techniques in HQCNN models applied to medical image analysis is also a future research direction

    Improving Heterogeneous Graph Learning with Weighted Mixed-Curvature Product Manifold

    Full text link
    In graph representation learning, it is important that the complex geometric structure of the input graph, e.g. hidden relations among nodes, is well captured in embedding space. However, standard Euclidean embedding spaces have a limited capacity in representing graphs of varying structures. A promising candidate for the faithful embedding of data with varying structure is product manifolds of component spaces of different geometries (spherical, hyperbolic, or euclidean). In this paper, we take a closer look at the structure of product manifold embedding spaces and argue that each component space in a product contributes differently to expressing structures in the input graph, hence should be weighted accordingly. This is different from previous works which consider the roles of different components equally. We then propose WEIGHTED-PM, a data-driven method for learning embedding of heterogeneous graphs in weighted product manifolds. Our method utilizes the topological information of the input graph to automatically determine the weight of each component in product spaces. Extensive experiments on synthetic and real-world graph datasets demonstrate that WEIGHTED-PM is capable of learning better graph representations with lower geometric distortion from input data, and performs better on multiple downstream tasks, such as word similarity learning, top-kk recommendation, and knowledge graph embedding

    Incorporating Deep Q -- Network with Multiclass Classification Algorithms

    Full text link
    In this study, we explore how Deep Q-Network (DQN) might improve the functionality of multiclass classification algorithms. We will use a benchmark dataset from Kaggle to create a framework incorporating DQN with existing supervised multiclass classification algorithms. The findings of this study will bring insight into how deep reinforcement learning strategies may be used to increase multiclass classification accuracy. They have been used in a number of fields, including image recognition, natural language processing, and bioinformatics. This study is focused on the prediction of financial distress in companies in addition to the wider application of Deep Q-Network in multiclass classification. Identifying businesses that are likely to experience financial distress is a crucial task in the fields of finance and risk management. Whenever a business experiences serious challenges keeping its operations going and meeting its financial responsibilities, it is said to be in financial distress. It commonly happens when a company has a sharp and sustained recession in profitability, cash flow issues, or an unsustainable level of debt

    Designing a Direct Feedback Loop between Humans and Convolutional Neural Networks through Local Explanations

    Full text link
    The local explanation provides heatmaps on images to explain how Convolutional Neural Networks (CNNs) derive their output. Due to its visual straightforwardness, the method has been one of the most popular explainable AI (XAI) methods for diagnosing CNNs. Through our formative study (S1), however, we captured ML engineers' ambivalent perspective about the local explanation as a valuable and indispensable envision in building CNNs versus the process that exhausts them due to the heuristic nature of detecting vulnerability. Moreover, steering the CNNs based on the vulnerability learned from the diagnosis seemed highly challenging. To mitigate the gap, we designed DeepFuse, the first interactive design that realizes the direct feedback loop between a user and CNNs in diagnosing and revising CNN's vulnerability using local explanations. DeepFuse helps CNN engineers to systemically search "unreasonable" local explanations and annotate the new boundaries for those identified as unreasonable in a labor-efficient manner. Next, it steers the model based on the given annotation such that the model doesn't introduce similar mistakes. We conducted a two-day study (S2) with 12 experienced CNN engineers. Using DeepFuse, participants made a more accurate and "reasonable" model than the current state-of-the-art. Also, participants found the way DeepFuse guides case-based reasoning can practically improve their current practice. We provide implications for design that explain how future HCI-driven design can move our practice forward to make XAI-driven insights more actionable.Comment: 32 pages, 6 figures, 5 tables. Accepted for publication in the Proceedings of the ACM on Human-Computer Interaction (PACM HCI), CSCW 202
    • …
    corecore