3 research outputs found

    Factors regulating the relationship between total and size-fractionated chlorophyll-a in coastal waters of the Red Sea

    Get PDF
    This is the final version. Available from the publisher via the DOI in this record.Phytoplankton biomass and size structure are recognized as key ecological indicators. With the aim to quantify the relationship between these two ecological indicators in tropical waters and understand controlling factors, we analyzed the total chlorophyll-a concentration, a measure of phytoplankton biomass, and its partitioning into three size classes of phytoplankton, using a series of observations collected at coastal sites in the central Red Sea. Over a period of 4 years, measurements of flow cytometry, size-fractionated chlorophyll-a concentration, and physical-chemical variables were collected near Thuwal in Saudi Arabia. We fitted a three-component model to the size-fractionated chlorophyll-a data to quantify the relationship between total chlorophyll and that in three size classes of phytoplankton [pico- (<2µm), nano- (2–20µm) and micro-phytoplankton (>20µm)]. The model has an advantage over other more empirical methods in that its parameters are interpretable, expressed as the maximum chlorophyll-a concentration of small phytoplankton (pico- and combined pico-nanophytoplankton, C m p and C m p,n , respectively) and the fractional contribution of these two size classes to total chlorophyll-a as it tends to zero (Dp and Dp,n). Residuals between the model and the data (model minus data) were compared with a range of other environmental variables available in the dataset. Residuals in pico- and combined pico-nanophytoplankton fractions of total chlorophyll-a were significantly correlated with water temperature (positively) and picoeukaryote cell number (negatively). We conducted a running fit of the model with increasing temperature and found a negative relationship between temperature and parameters C m p and C m p,n and a positive relationship between temperature and parameters Dp and Dp,n. By harnessing the relative red fluorescence of the flow cytometric data, we show that picoeukaryotes, which are higher in cell number in winter (cold) than summer (warm), contain higher chlorophyll per cell than other picophytoplankton and are slightly larger in size, possibly explaining the temperature shift in model parameters, though further evidence is needed to substantiate this Brewin et al. Total and Size-Fractionated Chlorophyll-a in the Red Sea finding. Our results emphasize the importance of knowing the water temperature and taxonomic composition of phytoplankton within each size class when understanding their relative contribution to total chlorophyll. Furthermore, our results have implications for the development of algorithms for inferring size-fractionated chlorophyll from satellite data, and for how the partitioning of total chlorophyll into the three size classes may change in a future oceanUK National Centre for Earth Observation (NCEO)King Abdullah University for Science and Technology (KAUST) Office of Sponsored Research (OSR): Virtual Red Sea Initiativ

    Comparison of Satellite-Derived Phytoplankton Size Classes Using In-Situ Measurements in the South China Sea

    No full text
    Ocean colour remote sensing is used as a tool to detect phytoplankton size classes (PSCs). In this study, the Medium Resolution Imaging Spectrometer (MERIS), Moderate Resolution Imaging Spectroradiometer (MODIS), and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) phytoplankton size classes (PSCs) products were compared with in-situ High Performance Liquid Chromatography (HPLC) data for the South China Sea (SCS), collected from August 2006 to September 2011. Four algorithms were evaluated to determine their ability to detect three phytoplankton size classes. Chlorophyll-a (Chl-a) and absorption spectra of phytoplankton (aph(λ)) were also measured to help understand PSC’s algorithm performance. Results show that the three abundance-based approaches performed better than the inherent optical property (IOP)-based approach in the SCS. The size detection of microplankton and picoplankton was generally better than that of nanoplankton. A three-component model was recommended to produce maps of surface PSCs in the SCS. For the IOP-based approach, satellite retrievals of inherent optical properties and the PSCs algorithm both have impacts on inversion accuracy. However, for abundance-based approaches, the selection of the PSCs algorithm seems to be more critical, owing to low uncertainty in satellite Chl-a input dat
    corecore