28,899 research outputs found

    Urinary peptidomics analysis reveals proteases involved in diabetic nephropathy

    Get PDF
    Mechanisms underlying the onset and progression of nephropathy in diabetic patients are not fully elucidated. Deregulation of proteolytic systems is a known path leading to disease manifestation, therefore we hypothesized that proteases aberrantly expressed in diabetic nephropathy (DN) may be involved in the generation of DN-associated peptides in urine. We compared urinary peptide profiles of DN patients (macroalbuminuric, n = 121) to diabetic patients with no evidence of DN (normoalbuminuric, n = 118). 302 sequenced, differentially expressed peptides (adjusted p-value < 0.05) were analysed with the Proteasix tool predicting proteases potentially involved in their generation. Activity change was estimated based on the change in abundance of the investigated peptides. Predictions were correlated with transcriptomics (Nephroseq) and relevant protein expression data from the literature. This analysis yielded seventeen proteases, including multiple forms of MMPs, cathepsin D and K, kallikrein 4 and proprotein convertases. The activity of MMP-2 and MMP-9, predicted to be decreased in DN, was investigated using zymography in a DN mouse model confirming the predictions. Collectively, this proof-of-concept study links urine peptidomics to molecular changes at the tissue level, building hypotheses for further investigation in DN and providing a workflow with potential applications to other diseases

    Computational Models for Transplant Biomarker Discovery.

    Get PDF
    Translational medicine offers a rich promise for improved diagnostics and drug discovery for biomedical research in the field of transplantation, where continued unmet diagnostic and therapeutic needs persist. Current advent of genomics and proteomics profiling called "omics" provides new resources to develop novel biomarkers for clinical routine. Establishing such a marker system heavily depends on appropriate applications of computational algorithms and software, which are basically based on mathematical theories and models. Understanding these theories would help to apply appropriate algorithms to ensure biomarker systems successful. Here, we review the key advances in theories and mathematical models relevant to transplant biomarker developments. Advantages and limitations inherent inside these models are discussed. The principles of key -computational approaches for selecting efficiently the best subset of biomarkers from high--dimensional omics data are highlighted. Prediction models are also introduced, and the integration of multi-microarray data is also discussed. Appreciating these key advances would help to accelerate the development of clinically reliable biomarker systems

    Methyl-CpG-binding domain sequencing reveals a prognostic methylation signature in neuroblastoma

    Get PDF
    Accurate assessment of neuroblastoma outcome prediction remains challenging. Therefore, this study aims at establishing novel prognostic tumor DNA methylation biomarkers. In total, 396 low- and high-risk primary tumors were analyzed, of which 87 were profiled using methyl-CpG-binding domain (MBD) sequencing for differential methylation analysis between prognostic patient groups. Subsequently, methylation-specific PCR (MSP) assays were developed for 78 top-ranking differentially methylated regions and tested on two independent cohorts of 132 and 177 samples, respectively. Further, a new statistical framework was used to identify a robust set of MSP assays of which the methylation score (i.e. the percentage of methylated assays) allows accurate outcome prediction. Survival analyses were performed on the individual target level, as well as on the combined multimarker signature. As a result of the differential DNA methylation assessment by MBD sequencing, 58 of the 78 MSP assays were designed in regions previously unexplored in neuroblastoma, and 36 are located in non-promoter or non-coding regions. In total, 5 individual MSP assays (located in CCDC177, NXPH1, lnc-MRPL3-2, lnc-TREX1-1 and one on a region from chromosome 8 with no further annotation) predict event-free survival and 4 additional assays (located in SPRED3, TNFAIP2, NPM2 and CYYR1) also predict overall survival. Furthermore, a robust 58-marker methylation signature predicting overall and event-free survival was established. In conclusion, this study encompasses the largest DNA methylation biomarker study in neuroblastoma so far. We identified and independently validated several novel prognostic biomarkers, as well as a prognostic 58-marker methylation signature

    DNA repair deficiency biomarkers and the 70-gene ultra-high risk signature as predictors of veliparib/carboplatin response in the I-SPY 2 breast cancer trial.

    Get PDF
    Veliparib combined with carboplatin (VC) was an experimental regimen evaluated in the biomarker-rich neoadjuvant I-SPY 2 trial for breast cancer. VC showed improved efficacy in the triple negative signature. However, not all triple negative patients achieved pathologic complete response and some HR+HER2- patients responded. Pre-specified analysis of five DNA repair deficiency biomarkers (BRCA1/2 germline mutation; PARPi-7, BRCA1ness, and CIN70 expression signatures; and PARP1 protein) was performed on 116 HER2- patients (VC: 72 and concurrent controls: 44). We also evaluated the 70-gene ultra-high risk signature (MP1/2), one of the biomarkers used to define subtype in the trial. We used logistic modeling to assess biomarker performance. Successful biomarkers were combined using a simple voting scheme to refine the 'predicted sensitive' group and Bayesian modeling used to estimate the pathologic complete response rates. BRCA1/2 germline mutation status associated with VC response, but its low prevalence precluded further evaluation. PARPi-7, BRCA1ness, and MP1/2 specifically associated with response in the VC arm but not the control arm. Neither CIN70 nor PARP1 protein specifically predicted VC response. When we combined the PARPi-7 and MP1/2 classifications, the 42% of triple negative patients who were PARPi7-high and MP2 had an estimated pCR rate of 75% in the VC arm. Only 11% of HR+/HER2- patients were PARPi7-high and MP2; but these patients were also more responsive to VC with estimated pathologic complete response rates of 41%. PARPi-7, BRCA1ness and MP1/2 signatures may help refine predictions of VC response, thereby improving patient care

    Stable Feature Selection for Biomarker Discovery

    Full text link
    Feature selection techniques have been used as the workhorse in biomarker discovery applications for a long time. Surprisingly, the stability of feature selection with respect to sampling variations has long been under-considered. It is only until recently that this issue has received more and more attention. In this article, we review existing stable feature selection methods for biomarker discovery using a generic hierarchal framework. We have two objectives: (1) providing an overview on this new yet fast growing topic for a convenient reference; (2) categorizing existing methods under an expandable framework for future research and development

    Defining a robust biological prior from Pathway Analysis to drive Network Inference

    Get PDF
    Inferring genetic networks from gene expression data is one of the most challenging work in the post-genomic era, partly due to the vast space of possible networks and the relatively small amount of data available. In this field, Gaussian Graphical Model (GGM) provides a convenient framework for the discovery of biological networks. In this paper, we propose an original approach for inferring gene regulation networks using a robust biological prior on their structure in order to limit the set of candidate networks. Pathways, that represent biological knowledge on the regulatory networks, will be used as an informative prior knowledge to drive Network Inference. This approach is based on the selection of a relevant set of genes, called the "molecular signature", associated with a condition of interest (for instance, the genes involved in disease development). In this context, differential expression analysis is a well established strategy. However outcome signatures are often not consistent and show little overlap between studies. Thus, we will dedicate the first part of our work to the improvement of the standard process of biomarker identification to guarantee the robustness and reproducibility of the molecular signature. Our approach enables to compare the networks inferred between two conditions of interest (for instance case and control networks) and help along the biological interpretation of results. Thus it allows to identify differential regulations that occur in these conditions. We illustrate the proposed approach by applying our method to a study of breast cancer's response to treatment
    • …
    corecore