20 research outputs found

    Performance Boundary Identification for the Evaluation of Automated Vehicles using Gaussian Process Classification

    Get PDF
    Safety is an essential aspect in the facilitation of automated vehicle deployment. Current testing practices are not enough, and going beyond them leads to infeasible testing requirements, such as needing to drive billions of kilometres on public roads. Automated vehicles are exposed to an indefinite number of scenarios. Handling of the most challenging scenarios should be tested, which leads to the question of how such corner cases can be determined. We propose an approach to identify the performance boundary, where these corner cases are located, using Gaussian Process Classification. We also demonstrate the classification on an exemplary traffic jam approach scenario, showing that it is feasible and would lead to more efficient testing practices.Comment: 6 pages, 5 figures, accepted at 2019 IEEE Intelligent Transportation Systems Conference - ITSC 2019, Auckland, New Zealand, October 201

    Three-state Markov chain based reliability analysis of complex traction power supply systems

    Get PDF

    Performance modelling of adaptive VANET with enhanced priority scheme

    Get PDF
    In this paper, we present an analytical and simulated study on the performance of adaptive vehicular ad hoc networks (VANET) priority based on Transmission Distance Reliability Range (TDRR) and data type. VANET topology changes rapidly due to its inherent nature of high mobility nodes and unpredictable environments. Therefore, nodes in VANET must be able to adapt to the ever changing environment and optimize parameters to enhance performance. However, there is a lack of adaptability in the current VANET scheme. Existing VANET IEEE802.11p’s Enhanced Distributed Channel Access; EDCA assigns priority solely based on data type. In this paper, we propose a new priority scheme which utilizes Markov model to perform TDRR prediction and assign priorities based on the proposed Markov TDRR Prediction with Enhanced Priority VANET Scheme (MarPVS). Subsequently, we performed an analytical study on MarPVS performance modeling. In particular, considering five different priority levels defined in MarPVS, we derived the probability of successful transmission, the number of low priority messages in back off process and concurrent low priority transmission. Finally, the results are used to derive the average transmission delay for data types defined in MarPVS. Numerical results are provided along with simulation results which confirm the accuracy of the proposed analysis. Simulation results demonstrate that the proposed MarPVS results in lower transmission latency and higher packet success rate in comparison with the default IEEE802.11p scheme and greedy scheduler scheme

    Inevitable Collision States for Motorcycle-to-Car Collision Scenarios

    Get PDF
    corecore