21,599 research outputs found

    Real-time Spatial Detection and Tracking of Resources in a Construction Environment

    Get PDF
    Construction accidents with heavy equipment and bad decision making can be based on poor knowledge of the site environment and in both cases may lead to work interruptions and costly delays. Supporting the construction environment with real-time generated three-dimensional (3D) models can help preventing accidents as well as support management by modeling infrastructure assets in 3D. Such models can be integrated in the path planning of construction equipment operations for obstacle avoidance or in a 4D model that simulates construction processes. Detecting and guiding resources, such as personnel, machines and materials in and to the right place on time requires methods and technologies supplying information in real-time. This paper presents research in real-time 3D laser scanning and modeling using high range frame update rate scanning technology. Existing and emerging sensors and techniques in three-dimensional modeling are explained. The presented research successfully developed computational models and algorithms for the real-time detection, tracking, and three-dimensional modeling of static and dynamic construction resources, such as workforce, machines, equipment, and materials based on a 3D video range camera. In particular, the proposed algorithm for rapidly modeling three-dimensional scenes is explained. Laboratory and outdoor field experiments that were conducted to validate the algorithm’s performance and results are discussed

    A Top-Down Approach to Managing Variability in Robotics Algorithms

    Full text link
    One of the defining features of the field of robotics is its breadth and heterogeneity. Unfortunately, despite the availability of several robotics middleware services, robotics software still fails to smoothly handle at least two kinds of variability: algorithmic variability and lower-level variability. The consequence is that implementations of algorithms are hard to understand and impacted by changes to lower-level details such as the choice or configuration of sensors or actuators. Moreover, when several algorithms or algorithmic variants are available it is difficult to compare and combine them. In order to alleviate these problems we propose a top-down approach to express and implement robotics algorithms and families of algorithms so that they are both less dependent on lower-level details and easier to understand and combine. This approach goes top-down from the algorithms and shields them from lower-level details by introducing very high level abstractions atop the intermediate abstractions of robotics middleware. This approach is illustrated on 7 variants of the Bug family that were implemented using both laser and infra-red sensors.Comment: 6 pages, 5 figures, Presented at DSLRob 2013 (arXiv:cs/1312.5952

    Decentralized MPC based Obstacle Avoidance for Multi-Robot Target Tracking Scenarios

    Full text link
    In this work, we consider the problem of decentralized multi-robot target tracking and obstacle avoidance in dynamic environments. Each robot executes a local motion planning algorithm which is based on model predictive control (MPC). The planner is designed as a quadratic program, subject to constraints on robot dynamics and obstacle avoidance. Repulsive potential field functions are employed to avoid obstacles. The novelty of our approach lies in embedding these non-linear potential field functions as constraints within a convex optimization framework. Our method convexifies non-convex constraints and dependencies, by replacing them as pre-computed external input forces in robot dynamics. The proposed algorithm additionally incorporates different methods to avoid field local minima problems associated with using potential field functions in planning. The motion planner does not enforce predefined trajectories or any formation geometry on the robots and is a comprehensive solution for cooperative obstacle avoidance in the context of multi-robot target tracking. We perform simulation studies in different environmental scenarios to showcase the convergence and efficacy of the proposed algorithm. Video of simulation studies: \url{https://youtu.be/umkdm82Tt0M
    • 

    corecore