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1 Introduction 

1.1 Purpose of the document 

The goal of SUPEROPT is to investigate the interaction between an optimization and a human 
supervisor.  “E.02.01-SUPEROPT-D1-PDLR Problem Definition and Literature Review” defined two 
challenge scenarios, the “Network Manager” (NM) and the “Multi-Sector Controller” (MSC), through 
which such interactions could be investigated.  Table 1 presents a high-level review of some of the 
key parameters of the NM and MSC roles as implemented in this version of the models.  Note that the 
purpose of SUPEROPT is to use these as case studies to investigate how humans and trajectory 
optimizers can cooperate: they are not intended to be a complete design of future roles in SESAR. 

Role Network Manager Multi-Sector Controller 

Candidate 
optimizer(s) 

Simulated Annealing 

Genetic Algorithm 

MILP 

Non-linear 

Scale 

FAB  

Flight-by-Flight Flow 

Multi-Sector Area (MSA)  

Individual Aircraft Trajectories  

(with multiple, moving obstacle 
avoidance) 

Planning Horizon Up to 2 hours 20 minutes 

Time-step 1 minute 2 minutes 

How the 
supervisor can 
manipulate the 
optimizer 

N/A Selection of intuitive constraints  

Defined go-via points or corridors 

How the optimizer 
informs the 
supervisor 

List of ranked distinct solutions 

Load-Time profile 

Active Constraints 

Trade-space of solutions (multi-
objective) 

Constraints 
Runway capacities Collision Avoidance  

Aircraft Dynamics 

Table 1: Summary of NM and MSC roles 

This document focuses on methods through which a human supervisor can influence the result of an 
optimization with the aim of separating the high-level decision making (human supervisor) from the 
low level detailed trajectory generation (optimizer). Specifically, this document uses the MSC case 
study to demonstrate novel forms of constraints to achieve these goals. 

The remainder of this document is structured as follows:  Section 3 presents a Mixed Integer Linear 
Program (MILP) optimization of the MSC scenario including a sub-section on conflict resolution sense 
constraints for high-level supervisor input; Section 4 mirrors the MILP MSC solution section but using 
a non-linear model of the aircraft dynamics with a polar set representation for collision avoidance; 
Section 5 presents some initial results on the relative computational complexity of each method. 
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1.2 Intended readership 

This document is intended primarily for EUROCONTROL readership to report the principal project 
findings but may be of interest to other SESAR projects that wish to utilise any of the results. 

1.3 Inputs from other projects 

The Challenge Scenarios are developed around roles outlined in the PHARE [7] and ADAHR [8] 
EUROCONTROL projects. 

1.4 Acronyms and Terminology 

Term Definition 

AM Airspace Manager 

AMC Airspace Management Cell 

AOA Aircraft Operator Agent 

AOC Airline Operations Centre 

AOP Airspace Operations Plan 

ATFM Air Traffic Flow Management 

ATM: Air Traffic Management 

CDM Collaborative Decision Making 

DOC Direct Operating Cost 

EC Executive Controller 

E-ATMS European Air Traffic Management System 

FAB Functional Airspace Block 

GHA Ground Handling Agent 

LTM Local Traffic Manager 

MILP Mixed Integer Linear Programming 

MPC Model Predictive Control 

MSA Multi-Sector Area 

MSC Multi-Sector Controller 

MSP Multi-Sector Planner 

NM Network Manager 

PWA PieceWise Affine 

PC Planner Controller 
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Term Definition 

RBT Reference Business Trajectory 

ROCD Rate Of Climb/Descent 

SBT Shared Business Trajectory 

SESAR Single European Sky ATM Research Programme 

SESAR Programme The programme which defines the Research and Development activities and 
Projects for the SJU. 

SJU SESAR Joint Undertaking (Agency of the European Commission) 

SJU Work Programme The programme which addresses all activities of the SESAR Joint 
Undertaking Agency. 

TBC To Be Completed 

1.5 Nomenclature 

Symbol Definition �� Number of aircraft 

� Index of aircraft 

���, �� Position of � at time � (decision variable) 
	
��, �� Position of � at time � in dimension � 
����, �� Reference trajectory of � at time � (fixed parameter) 

� ��, �� Acceleration of � at time � 
� Index of time-step 

�� Sample time � 
�� Number of time-steps 

������ Final/exit time of � on reference trajectory (fixed parameter) 

����� Final/exit time of � (decision variable) 
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2 Introduction to MSC 

The ATM environment encompasses a range of requirements: some are hard constraints, e.g. 
collision avoidance, while others may depend on user preferences, e.g. minimum cost or minimum 
time trajectories.  One of the themes of the SUPEROPT project is developing methods to provide this 
flexibility within a supervised optimisation. 

The primary way of enabling such inputs investigated in this section is the development of new forms 
of constraints.  These are intended to capture supervisor desires in a way that is specific enough to 
avoid “surprises” in the results, yet flexible enough to ensure good performance overall. 

This section presents two implementations of the MSC role using Mixed Integer Linear Programming 
(MILP) and Collocation optimizers, respectively.  The MILP offers fast solutions and global optimality 
but a limited dynamics model (linear or piecewise linear) and discretized time. Meanwhile the 
collocation method allows a more thorough dynamics model and could enable the inclusion of noise 
or emissions models in the cost function but can be more difficult to solve, especially for the global 
optima. 

2.1 MSC Cost Function 

The cost function aims to capture mathematically the metrics of performance that the MSC wishes to 
“make small”, but without any specific upper limit on their acceptable values.  They should be made 
as small as possible within the constraints.  (Alternatively some metrics may be desired to be 
maximized – this is easily handled with a minus sign.)  Both formulations of the MSC share the cost 
function proposed in Equation 1. 

Assume there are �� aircraft in the MSA and that each aircraft a has Reference Business 

Trajectory (RBT) 	���, �� running from � � ��, the current time, to � � ������, the reference time at 

which the RBT ends; the immediate destination of aircraft � is defined by 	��������, ��. This would 
typically refer to the pre-determined point, e.g. in the SBT, at which the aircraft is expected to exit the 
MSA.  The optimizer designs for each aircraft a trajectory 	��, �� from time ��, i.e the current time, to �����, the new chosen time at which a exits the MSA.  Finally, since a numerical optimizer can only 

have a finite number of constraints, define discrete time step variable � to index a set of �� sampling 
times between �� and �����.  Constraint and cost evaluation will be performed at these points. 

where: the weighting on final time reflects the desire to avoid delay; the weighting on deviation from 
exit point penalizes coordinations with the adjoining MSA and long term deviations from the RBT; and 
the acceleration (	) weighting is included to reduce manoeuvring and increase passenger comfort; 
and the final term reflects the desire to stay close to the RBT throughout the MSA. 

The relative importance of the different terms is adjusted via the weights ��, �, �, ��.  How these 
weights affect the result is an important question and is well studied in the field of multi-objective 
optimization.  Further investigation into this aspect of SUPEROPT is on-going. 

A further term could be added to the cost function (Equation 1) to directly account for each aircraft’s 
fuel consumption. Figure 1 shows a clear relationship between fuel flow and the flight phase and flight 
level. In the case of a linear solver (such as that used for MILPs), the nonlinearity of the relationship 
could be approximated using a PieceWise Affine (PWA) function. An example of a MILP 
implementation of a PWA can be seen in Section 3. In the case of a nonlinear solver, such as that 
used with the collocation model, then the underlying functions could be implemented directly. 

� � �
���
���
���
��������� �	������, � ! 	��������, � "#

�� � 	$%
�&' ���, ��

�� ��	���, �� ! 	����, �� #$%
�&' ())

)))
)))
*

$+
�&'  Equation 1 
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Figure 1: Variation of A319 fuel flow with flight phase and level 
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3 MSC MILP Solution 

3.1 MILP MSC Model 

This section presents the constraints required to approximate the aircraft dynamics in a Mixed Integer 
Linear Program. This section is primarily a review of [1] which contains the basic method and [2] 
which originally presented the 3-D model. The full model is included here for completeness. 

First we constrain the vehicle kinematics and dynamics assuming a point mass model: 

���, � � 1� � ���, �� �  .��, ����    Equation 2 

.��, � � 1� � .��, �� � ./ ��, ����   0   � 1 21, … , ��4, � 1 21, … , ��� ! 1�4  Equation 3 

Where 5 is the aircraft’s position; 6 the velocity, 6/  the acceleration; �� the length of each time-step; N8 
the number of aircraft in the problem; and N9 the number of time-steps in the planning horizon. 

An upper bound is placed on the aircrafts’ airspeed: 

:.��, ��:; < =>�?    0  � 1 21, … , ��4, � 1 21, … , ��4 Equation 4 

This is non-linear so is implemented using a number of linear approximations: 

.��, �� · A�B, ��  <  =>�? 
0  � 1 21, … , ��4, � 1 21, … , ��4, � 1 C!D, DE, B 1 C0,2DE Equation 5 

Where the angle ranges both the inclination, α, and azimuth, θ are approximated by NJ discrete 
samples. 

The initial position is fixed: 

���, 0� � �K���, ��   0   � 1 21, … , ��4 Equation 6 

taking the start point of the trajectory to be the current point of the aircraft. 

Similarly we ensure that the destination is reached. Due to the fixed length of the time-step we allow a 
degree of flexibility in defining the target as an area rather than a point: 

� L���, �� � 1�12',…,$%4     0  � 1 21, … , ��4 Equation 7 

���, k� ! �N��� < KN��� � M�1 ! bQ�a, k�� Equation 8 

�N��� ! ���, k� < KN��� � M�1 ! bQ�a, k�� 0   � 1 21, … , ��4, � 1 21, … , ��4 Equation 9 

KN��� < KNSTU    0  a 1 21, … , N84 Equation 10 

Where bQ is a set of binary variables to indicate the time-step at which each aircraft arrives at its 

destination, hence ����� in Equation 1 can be represented as ∑ �L���, ��� ; 	� is the destination (or 
finish) for each aircraft; KN��� is a decision variable representing the distance to the destination at the 
arrival time-step for each aircraft, �; M is a vector of large positive constants; KNSTU is the maximum 

permitted distance in each dimension of any aircraft from its destination at the arrival time-step, 
i.e. the size of the target area. 
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Equation 7 ensures that one of the time-steps is taken as the arrival time at the destination while 
Equation 8 and Equation 9 determine the distance to the destination at that time; the binary variable 
set in Equation 7 combined with M relax the constraint at all time-steps except that chosen as the 
finish time. Finally Equation 10 ensures that the distance to the destination at the arrival time is within 
a specified bound.  The arrival time term in the cost can be captured via ����� � ∑ L���, �����  . 

3.1.1 Aircraft Performance Model 

In order to extend the previous 2-D model [1] to 3-D while maintaining realistic aircraft dynamics, it is 
necessary to introduce a performance model to the trajectory generator/optimization. 

The EUROCONTROL Base of Aircraft Data (BADA) provides both an analytical model and a 
database of aircraft performance for typical commercial aircraft. The BADA User Manual [3] states 
that the longitudinal and normal acceleration for civil airliners is limited to 2 and 5 fps

2
 respectively.  

Acceleration constraints are applied in the horizontal and vertical directions, respectively.  Since MILP 
requires the use of a global frame of reference, it is impossible to distinguish between longitudinal and 
lateral acceleration so the lower limit of 2 fps

2 
is applied in all horizontal directions, represented by a 

limit AXYZ[\]8^ .  Vertical acceleration is constrained to be less than 5 fps
2 
up or down. 

Trajectory generation using MILP requires the use of a global frame of reference. If we assume small 
angles of attack and bank angles then we can approximate the longitudinal and normal accelerations 
as horizontal and vertical limits respectively: 

e�θ, 0� · ./ ��, �� < AXYZ[\]8^  Equation 11 

!A`aZ9]8^ < C0 0 1E./ ��, �� < A`aZ9]8^ 0 � 1 21. . ��4, � 1 21. . �� ! 14 Equation 12 

Where �� is the total number of aircraft; �� is the number of time-steps.  The angular range is again 

approximated over a discrete set of �c angles. 
To model individual aircraft dynamics more precisely, the Rate Of Climb/Descent (ROCD) has been 
limited according to BADA. Taking the data for a typical aircraft (Airbus A319), operating at its nominal 
weight, it is clear that the permitted ROCD is dependent on flight regime and level [3] and that this 
data can be approximated by suitable Piecewise Affine (PWA) functions for climb and descent. 
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Figure 2: A319 Rate Of Climb/Descent approximated with a piecewise affine function 

The PWA function can easily be implemented using MILP as follows: 

� L�def�g, �, h�> � 1 Equation 13 

� i�def�g, �, h�> j 0 Equation 14 

� i�def�g, �, h�> < kL�def�g, �, h�,L�def�g, �, h ! 1� � L�def�g, �, h�,    L�def�g, �, �lmnop�g� ! 1 , q rs	 h � 1rs	 h 1  22, … , �lmnop4rs	 h �  �lmnop
 

 Equation 15 

� i�def�g, �, h�t�def�g, h�> �  	u Equation 16 

vu�g, �� < � i�def�g, �, h�w�de�g, h�>  Equation 17 

vu�g, �� j � i�def�g, �, h�w�df�g, h�>  

0 g 1  21, … , ��4, � 1  21, … , �� ! 14, h 1   x1, … , �lmnopy 
Equation 18 
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where zK{|}�g� is a vector of flight levels at which ‘the rate of climb or descent function changes’ and w�de�g, h� and w�df�g, h� are the maximum rate of climb or descents respectively at the altitudes 
specified in zK{|}. 
3.1.2 Avoidance Constraints 

A final modification to the 2-D formulation [1] was to establish independent horizontal and vertical 
separation distances; this reflects current ATM practice where typically horizontal separation is 1000ft 
compared to 5nmi (approximately 30400ft) horizontally [14]. The avoidance constraints are formulated 
in MILP as follows: 

	
��', �� < 	
��#, �� ! ~� � ��1 ! L���', �#, �, ��  Equation 19 

	
��', �� j 	
��#, �� � ~� ! ��1 ! L���', �#, �, � � �
�  0 �' 1  21, … , ��4, �# 1  21, … , ��4, � 1 21, … ,24, � 1  22, … , ��4  �   �' � � Equation 20 

Where 	
��', �� is element d of the position vector of aircraft �', at timestep � ; ~� is the horizontal 
avoidance distance (5nmi); � is a large positive scalar; and L���', �#, �, �� is a binary variable used to 
relax the avoidance constraint in all but one of the directions ��, ��, ��, !�, !�, !�, i.e. it is only 
necessary to avoid the obstacle in one direction at each time-step. Equation 19 and Equation 20 
constrain the distance between �' and �# to be greater than the horizontal avoidance distance in the 
positive and negative direction, respectively, for a given dimension �, i.e.: 

DH

y

x

a1

a2

 

Figure 3: MILP approximation to horizontal avoidance criteria 

In the vertical direction we require just two binary variables: 

	u��', �� < 	u��#, �� ! ~� � ��1 ! L���', �#, �, 3�  Equation 21 

	u��', �� j 	u��#, �� � ~� ! ��1 ! L���', �#, �, 6�  0 �' 1  21, … , ��4, �# 1  21, … , ��4, � 1  22, … , ��4  �   �' � �# 
Equation 22 

Where ~� is the vertical avoidance distance (1000ft). Equation 21 and Equation 22 constrain the 
vertical separation in the same manner as Equation 19 and Equation 20 do horizontally. 

Finally: 

� L���', �#, �, h��
>&' � 1 ! � � L���, ���12�����4

��'
�&'  

0 �' 1  21, … , ��4, �# 1  21, … , ��4, � 1  22, … , ��4  �   �' � �# 
Equation 23 
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Where L���, �� is set of binary variables indicating the finishing time from Equation 7. Equation 23 

ensures that at least one of the avoidance binaries previously constructed is enforced at each time-
step between each pair of aircraft; the sum at the end of the equation is required to ensure that the 
optimization does not plan for an aircraft once it has reached its destination. 

In cases where the avoidance distance is large in comparison with the time-step, the above 
formulation is sufficient. However, to reduce the number of decision variables when planning over 
longer intervals, the length of each time-step is often increased. Once the distance that an aircraft can 
travel in a single time-step is larger than the avoidance distance then the above formulation can lead 
to optimized trajectories containing conflicts due to “corner-cutting”. Consider the case shown in 
Figure 4 where the avoidance constraints are valid at times � and � ! 1 but the two aircraft clearly 
come into conflict between the time-steps. 

 

Figure 4: MILP "corner cutting" 

To overcome this problem, it is proposed to enforce the constraints at the current time of each aircraft 
step and also the previous time-step of both aircraft with the same binaries, i.e. between: �'���  and �#���; �'��� ! 1  and �#���; �'��� and �#�� ! 1�; �'�� ! 1� and �#�� ! 1�. This approach is 
equivalent to ensuring that the line segments, representing the aircraft trajectory during an entire time-
step, do not intersect, by ensuring a common separating plane between the two segments. Note that 
this introduces more constraints but does not introduce more binary variables. 

Due to the approximation of the MILP avoidance constraints the solution can be slightly conservative: 
rather than only the line segments not intersecting, we must also consider the overall bounding box as 
shown in Figure 5 where we wish to avoid the darker region (a fixed distance perpendicular to the 
trajectory) but the above formulation prohibits other aircraft passing anywhere within the entire 
shaded region. To alleviate this conservatism it is simple to approximate the circular avoidance 
regions at each time step with a greater number of constraints. The effect of an increased number of 
constraints on inter-sample avoidance is shown in Figure 6. 
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Figure 5: Inter-sample avoidance with MILP avoidance constraints 

a1 (k-1)

a1 (k)

a2 (k)

a2 (k-1)
 

Figure 6: Refined inter-sample MILP avoidance constraints 

Formalizing the above concepts requires us to define the avoidance binaries between all aircraft at all 
time-steps along both trajectories, i.e.: 

cos �2DB�� � �	?��', �'� ! 	?��#, �#�� ! sin �2DB�� � �	���', �'� ! 	���#, �#� j ~� ! ��1 ! L���', �#, �', �#, B�   Equation 24 

cos �2DB�� � �	?��', �'� ! 	?��#, �# ! 1�� ! sin �2DB�� � �	���', �'� ! 	���#, �# ! 1� j ~� ! ��1 ! L���', �#, �', �#, B�   Equation 25 

cos �2DB�� � �	?��', �'�'� ! 	?��#, �#�� ! sin �2DB�� � �	���', �' ! 1� ! 	���#, �#� j ~� ! ��1 ! L���', �#, �', �#, B�   Equation 26 
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Finally we must modify Equation 23 to ensure that each pair of aircraft are separated in at least one 
direction at each time-step while accounting for either aircraft reaching their destination before the 
end of the planning period: 

 

3.2 Conflict Resolution Sense Constraints 

In 2-D, it is clear that conflicts between aircraft can be divided into distinct classes of solutions [5], 
e.g. left or right, or ahead or behind.  These classes are referred to here as the “sense” of the 
resolution.  The first mechanism for supervisor input here is the ability to constrain which sense of 
resolution is adopted without otherwise constraining the path.  An initial formulation to achieve this 
was presented in [1].  The idea of requiring a particular sense translates readily to 3-D, with an MSC 
requiring ahead, behind, over or under, for example.  However, the classes are not as clearly defined 
in 3-D as in 2-D as there is always a continuum of paths around any conflict.  This section develops a 
3-D sense constraint approach to overcome this challenge. 

3.2.1 Vertical Resolution 

In addition to the methods proposed in the SUPEROPT Problem Definition and Literature Review [2], 
a perhaps more intuitive approach to enforcing a particular sense of resolution is to fix some of the 
variables in the problem.  Forcing resolution in a particular direction can be achieved through fixing 
the trajectory in the other directions to the RBT.  For example, to force a horizontal resolution we 
would fix the aircraft’s altitude: 

Where 	���, �� is the altitude of aircraft � at time-step �. 
Conversely to enforce vertical resolution we would fix the longitude and latitude of the trajectory  

The simplest way of constraining the sense of a conflict resolution is to fix the binary avoidance 
variables to prohibit passing on an undesired side of an obstacle.  Consider the case illustrated in 
Figure 7a where there is a square, 2-D obstacle which can be avoided on any side, i.e. with any 
sense. Now in Figure 7b, the binary allowing the trajectory to pass to the ‘right’ of the object has been 
fixed to prohibit this possibility; binaries 1 and 2 have not been fixed as we do not wish to enforce that 
the path is to the ‘left’ of the obstacle at all times.  In dense traffic situations, sense might become 
more complicated to constrain, and then the methods presented in [1] must be employed. 

cos �2DB�� � �	?��', �' ! 1� ! 	?��#, �# ! 1�� ! sin �2DB�� � �	���', �' ! 1� ! 	���#, �# ! 1� j ~� ! ��1 ! L���', �#, �', �#, B�   Equation 27 

0    �' 1  21, … , ��4, �# 1  21, … , ��4, �' 1  22, … , ��4, �# 1  22, … , ��4, B 1 21, … , ��4 �   ��' � �#�  � ��' � �#�  

� L���', �#, �', �#, B��B

�&' � 1 ! � L���', ������'
��&' ! � L���#, ������'

��&'  Equation 28 

0    �' 1  21, … , ��4, �# 1  21, … , ��4, �' 1  22, … , ��4, �# 1  22, … , ��4 �   ��' � �#� � ��' � �#�     

	���, �� � 	����, ��  0    � 1  21, … , ��4, � 1  21, … , ��4 Equation 29 

	
��, �� � 	
���, ��  0    � 1  21, 24, � 1  21, … , ��4, � 1  21, … , ��4 Equation 30 
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(a) Unconstrained resolution (b) Restricted sense resolution 

Figure 7: Constraining a resolution sense through fixing binary variables 

Considering again the case of vertical resolution, if we require aircraft 1 to go over aircraft 2 then we 
constrain the binaries as follows: 

Figure 8 shows some results using vertical resolution. Each sub-figure shows a pair of trajectories for 
two aircraft (travelling West to East) projected in the horizontal and vertical planes. The aircraft’s 
closest approach is highlighted with a cylinder representing half of the conflict distance in each 
direction, i.e. if the cylinders intersect there is a conflict (in which case they would be shaded red). It 
should be noted that in order to emphasise the different behaviours, the avoidance criteria where 
changed to 3nm and approximately 2000ft. 

Figure 8a shows an unconstrained avoidance scenario with two aircraft travelling West to East, with 
flight F002 climbing up through F001. In the unconstrained case, separation is achieved through 
vertical separation and the cost is reduced by increasing the velocity of both aircraft so that they arrive 
at the destination earlier. 

Figure 8b shows the same scenario but with the latitude and longitude of the trajectory fixed to force 
vertically resolution of the conflict. Whilst this may be expected to reach the same solution as the 
unconstrained problem (since in that case the conflict was also resolved vertically), the trajectories 
differ significantly, this is due to fixing the horizontal position of the aircraft which prohibits 
accelerating to reach the destination earlier. 

To force a particular sense of vertical resolution we can fix the appropriate avoidance binary with the 
result shown in Figure 8c where F001 passes above F002, i.e. the sense of the resolution is reversed 
compared with Figure 8b.  

 

1

2

3 4

L��2,1, �, 6� � 0    0   � 1  21, … , ��4 Equation 31 
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(a) Unconstrained 

 

(b) Resolve vertically 

 

(c) F001 over F002 

Figure 8: Vertical resolution results 
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It is noted that some instances, one aircraft performs additional climb or descent than that required to 
reach it’s destination and is then forced to descend or climb in the other direction.  Such behaviour is 
undesirable due to the increased cost and passenger discomfort.  One approach to resolve such 
behaviour would be to require a monotonic variation in altitude: 

However, it is not always possible to enforce monotonic flight profiles in the example in Figure 8c, as 
the aircraft begin too close in height to achieve vertical separation without one aircraft having to both 
climb and descend.  Adding the monotonicity constraint makes the optimization infeasible.  This 
motivates the development of constraint prioritization, in which constraints are enforced in some 
defined ordering up to the point where any more would make the problem infeasible. 

3.2.2 Temporal Resolution 

An alternative representation of resolution sense is for A to pass ahead of B (or vice versa).  This 
equates to a constraint that B cannot occupy any point in space that A currently occupies or will 
occupy in the future.  If it did, B could reach the crossing point of the two trajectories before A, 
violating the sense constraint.  Hence, for sense constraints in temporal form, avoidance must be 
enforced between a pair of vehicles at pairs of different time steps.  When combined with the previous 
method of fixing the vertical or horizontal aspects to the RBT, this provides a powerful formulation to 
enforce flight A to pass ahead of (or behind) flight B. 

Suppose that aircraft �' is required to pass ahead of aircraft �#.  We have already defined avoidance 
binaries between the pair of aircraft at all pairs of time-steps so all that remains is to enforce them at 
additional time-steps: 

cos �2DB�� � �	?�2, �'� ! 	?�1, �#�� ! sin �2DB�� � �	��2, �'� ! 	��1, �#� j ~� ! ��1 ! L��2,1, �', �#, B�   Equation 34 

0    �' 1  22, … , ��4, �# 1  22, … , ��4, B 1 21, … , ��4 �   ��' j �#�   

Where the notation is as before. It should be noted that the principal difference between the above 
equations and Equation 24 (without the sense constraints) is the extra conditions under which the 
constraints are applied, i.e. when �' � �#, this forces the avoidance of all future positions of �' by �#. 
Figure 9 shows an example of temporal resolution using the same scenario as the vertical resolution 
example in Figure 8.  It should be noted that in this case, despite fixing one-dimension of the 
trajectory, the resulting solution has allowed the aircraft to accelerate and reach the target earlier; this 
occurs as the vertical distance to the destination at the closest approach is sufficiently small that the 
cost of arriving earlier is lower than the cost of not achieving the precise altitude of the destination at 
the arrival time-step. 

Finally, should we wish to reverse the sense of the horizontal resolution we can request F001 to pass 
behind F002 (Figure 9c). 

r\�i, k� � r\�i ! 1, k� 0 i 1 21, … N84, k 1 21, … N94 �  r\�i ! 1, k� � r\�i ! 2, k� Equation 32 

r\�i, k�   r\�i ! 1, k� 0 i 1 21, … N84, k 1 21, … N94 �  r\�i ! 1, k�   r\�i ! 2, k� Equation 33 
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(a) Unconstrained 

 

(b) Resolve horizontally (F001 ahead of F002) 

 

(c) Resolve horizontally with F001 behind F002 

Figure 9: Temporal resolution results 
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3.2.3 Velocity Resolution 

Alternatively, conflicts can be avoided through “speed advisories”, i.e. one or more conflicting aircraft 
are requested to alter their airspeed to ensure safe separation is maintained at all times. Previous 
results have shown on a larger scale, that this approach can be effective enough to avoid conflicts 
ever developing [15]. 

Implementation of a speed advisory in a MILP implies that we wish the flightpath of the aircraft to 
follow the RBT but for the location of the aircraft at each time-step to be suitably adjusted. In the case 
of the vertical and temporal resolution methods outlined above, we fixed the aircraft trajectory in one 
or two dimensions to enforce resolution in the remaining dimension(s). A speed advisory can be 
enforced by fixing the aircraft in all 3 spatial dimensions, however, due to the fixed time-step in MILP 
we can not simply force the location of the new waypoints to be the same as that of the RBT as we 
would then have effectively fixed the trajectory in all 4 dimensions and thus prevented any form of 
deviation. Instead, we require that the new way-points occur at some point along the RBT as shown in 
Figure 10. 

 

a1

a2

t = 0s

t = 10s

t = 30s

t = 0s t = 10s t = 20s t = 30s

t = 20s

  

(a)RBTs (b)Resolved trajectories with a 
fixed time-step (MILP) 

(c)Resolved trajectories with 
a variable time-step 

Figure 10: Velocity resolution 

It is relatively trivial to force a waypoint to lie on line segment but as we do not know in advance if an 
aircraft needs to accelerate or not; or by how much then we must also select which line segment the 
new point should lie on which is best achieved through another PWA. Equation 34 selects the line 
segment that aircraft a, occupies at time-step k. 

� L���, �, ��$%�'
¡&' � 1 Equation 35 

0    � 1  21, … , ��4, � 1  21, … , ��4   

Where L���, �, �� is a binary variable. Now we must constrain each new way-point to lie on the 
selected line-segment: 

� ¢���, �, ����

£ < kL���, �, ��,L���, �, � ! 1� � L���, �, ��,    L���, �, � ! 1�, q rs	 � � 1rs	 � 1  22, … , �9 ! 14rs	 � �  �9  Equation 36 

���, �� � � ����, ��$%
¡&' ¢���, �, �� ¤ ¥	 Equation 37 

0    � 1  21, … , ��4, � 1  21, … , ��4   

Where ¢���, �, �� is the relative distance of aircraft a at time k from point j of its RBT, ����, �� and ¥	 is 
a small tolerance applied to ensure that the new trajectory remains dynamically feasible. 
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Figure 11 shows the effect of the above method on a 2D example of two aircraft. From the figure it 
can be seen that both aircraft remain on their original flightpath but that F001 accelerates and F002 
decelerates in order to ensure safe separation. Due to the inter-sample avoidance it can be seen in 
Figure 11c that the final result is slightly conservative; further refining the constraints could resolve 
this. 

  

(a)RBTs (b)Resolved trajectories (c)Aircraft location at 4
th
 

time-step 

Figure 11: Velocity resolution results (2D) 
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4 Collocation MSC Solution 

4.1 Nonlinear Model of Aircraft Dynamics 

This section presents a collocation model of the aircraft dynamics. Collocation methods approximate 
the state of an optimal control problem by a basis of polynomials [10] and are an active area of 
research for problems with ‘hard’ nonlinear dynamics [11]. 

The method solves for the coefficients of the Lagrange interpolating polynomial coefficients to the 
aircraft dynamics. The coefficients can be used to give the planned velocity and position of the vehicle 
at any time between the start and goal. For the MSC role this is particularly useful as it enables us to 
derive accurate points for diverting around aircraft/obstacles. 

Due to the non-linear nature of the collocation method, the optimizer is unable to guarantee a globally 
optimal solution. It is noted that the trajectory output from the optimizer is sensitive to the initial guess 
supplied as an input. The model presented here simply uses a straight line between the aircrafts intial 
and final positions as the input. Refining the initial guess would decrease solution time and has the 
potential to offer a lower cost solution. One option would be to use a simple search such as potential 
fields to generate a feasible initial guess. Alternatively, in some implementations (dependent on 
planning horizon and timescales) it may be appropriate to initialize the collocation method using a 
simplified version of the MILP model. 

We now develop the collocation model. Initially we consider time as normalized over, ¦ 1 2!1,14, 
before introducing a global time variable, �, in Equation 46, enabling us to have the duration of the 
trajectory as a variable in the optimization. 

At the highest level, our aim is to minimize some function of our states, U�¦� and inputs, §�¦�, i.e:  

Subject to the system dynamics: 

If we consider the aircraft’s trajectory at ¨ collocation points then we can represent this as an ¨ ! 1�© 
order polynomial: 

To determine the coefficients of the Lagrange interpolating polynomial we define ��¦ª� �  �ª and «�¦ª� � «ª  for g � 1, … , ¨. If ¬ is the Vandermonde matrix of order ¨, then we can write that: 

Or: 

Where  is the vector of polynomial coefficients, i.e.: 

min§���,U�¯� ° r�U, §��¦ Equation 38 

U/ �¦� � ±�U, §� Equation 39 

��¦� � ²' � ²#¦ � ³ � ²´¦´�' Equation 40 

µ�'�#¶�´
· � ���

�1 ¦' ¦'# ³ ¦'́ �'1 ¦# ¦## ³ ¦#́ �'¶ ¶ ¶ ¸ ¶1 ¦´ ¦#́ ³ ¦´́�'())
* µ²'²#¶²´

· Equation 41 

� � ¬² Equation 42 

² � ¬�¹� Equation 43 
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Differentiating Equation 40 gives: 

Or: 

That is, we can now express U/  purely in terms of U at the collocation points.  For the variable time 
form of the planning problem we apply the following transformation to map the trajectory onto the 
desired panning interval: 

Where �� and �� are the start and end times of the planning interval, and hence �� can be variable.  
Note that for clarity, the index for the aircraft is omitted in this development.  Substituting Equation 46 
into Equation 45 we have:  

ºª,¡ can be calculated offline. Using a simple point mass model the aircraft dynamics can be 

expressed as follows:  

µ�/'�/#¶�/´· � ���
�0 1 ¦' ³ ¦'́ �#0 1 ¦# ³ ¦#́ �#¶ ¶ ¶ ¸ ¶0 1 ¦´ ³ ¦´́�#())

* µ²'²#¶²´
· Equation 44 

�/ � »² � »¬�¹� �  |� Equation 45 

� �  ¼��� ! �� ¦ � �� � ��½/2 Equation 46 

�/��� � 2�� ! �� � ºª,¡���� � 2�� ! �� ±��ª , «ª�´
¡&'      0 g 1 21, … , ¨4 Equation 47 

��¦ª� �  
���
�� 	?	�¿B=ÀÁÂ())

)*
 Equation 48 

«�¦ª� �  ÃΔ¿ΔBΔÅÆ Equation 49 

 

��
���
���
���
���
�� � ºª,¡	?���´

¡&'
� ºª,¡	����´
¡&'
� ºª,¡¿���´
¡&'
� ºª,¡B���´
¡&'

� ºª,¡=ÀÁÂ���´
¡&' ()

)))
)))
)))
)))
)*

�  �� ! ��2
���
���
� =ÀÁÂ�g� cos B�g�=ÀÁÂ�g� sin B�g�Δ¿�g�=ÀÁÂ�g�ΔB�g�T�g� ! ~�g�h�g� ! ± =ÀÁÂ�g� Δ¿�g�())

)))
*
 

0 g 1 21, … , ¨4 

Equation 50 
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Where: =ÀÁÂ�g� is the aircraft’s true airspeed at point g; B is its heading; Å is the aircrafts thrust acting 
parallel to the aircraft velocity vector; h is the mass; and ~ is the drag which is defined as: 

And: 

Where È is the atmospheric density; S is the wing area; º
� is the parasitic drag coefficient; º
# is the 
induced drag coefficient and É is the bank angle which is currently assumed to be negligible.  This 
assumption is reasonable for aircraft in cruise but the model could be refined at a later stage.  The 
key feature is that the collocation approach can handle nonlinear dynamics models, enabling more 
realistic representation of aircraft performance than MILP. 

We can now add constraints such as initial position, destination and limits on the states and controls: 

Where �? is the number of elements in the state vector; �ª is a vector of the initial states; �� is a 
vector of the terminal conditions. 

Where �>�? and �>ª´ are vectors of upper and lower limits respectively on the elements of �; similarly «>�? and «>ª´ limit the control inputs. 

4.2 Avoidance of 4-D Obstacles 

Section 3 presented a formulation for 3-D obstacle avoidance in the MILP model for aircraft trajectory 
planning. This section presents an equivalent method for obstacle avoidance using collocation. 

In addition to requiring that all aircraft avoid conflicts with each other, there are times where a 
controller may wish to enforce all aircraft to avoid a region of airspace, e.g. closed sectors or sectors 
approaching their capacity limits. Closure of airspace is a temporal as well as spatial event which 
motivates the idea of 4-D obstacle avoidance. Both expected and unforeseen events may cause 
airspace closures/saturation so this problem is applicable to both the NM and MSC, however this 
implementation applies to the MSC only. 

4.2.1 Review of Polar Sets for Avoidance 

Patel and Goulart [4] advanced the idea of using polar sets for obstacle avoidance. The advantage to 
representing an obstacle in its polar form is that it transforms the constraints into a differentiable 
function which allows the use of fast gradient based methods to solve the optimization, thus reducing 
solution times. 

A geometric representation of the transformation for a 2-D obstacle is shown in Figure 12 where a 
convex obstacle in x-y is projected into an alternative “reciprocal” space. From the figure we can see 
that edges of the obstacle are transformed to vertices and that vertices are transformed to edges, this 

~ � '#È=ÀÁÂ# º
Ê Equation 51 

º
 � º
� � º
#ºË# Equation 52 

ºË � 2h±È=ÀÁÂ# Ê cos É Equation 53 

��1, �� � �ª���    0  � Ì21, … �?4 Equation 54 

��¨, �� � �����    0  � Ì21, … �?4 Equation 55 

�>ª´��� < ��g, �� < �>�?���    0  g 1 21, … , ¨4, � Ì21, … �?4 Equation 56 

«>ª´��� < «�g, �� < «>�?���    0  g 1 21, … , ¨4, � Ì21, … �?4 Equation 57 
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occurs as the polar-obstacle represent the set of hyperplanes that separate the regions within and 
exterior to the Cartesian obstacle. Thus, there is only one hyperplane that defines an face of the 
Cartesian obstacle while there are an infinite number of hyperplanes that exist at each vertex. 

 
 

(a) Cartesian Obstacle (b) Polar Obstacle 

Figure 12: Polar set representation of an obstacle 

Therefore we wish to ensure that a point � is not within the obstacle º, and that the equivalent point, �, in the polar-space is within the polar-obstacle º�, i.e.: 

where we define º� to be the polar set of º where º Í Î´ with 0 1 º: 

It is important to note that º must contain 0 then if º is closed and convex with 0 1 g¨�º, then º� is 
compact and convex with 0 1 g¨�º�. Furthermore, if the set º is polyhedral with: 

Then: 

It is important to note that for the above relationship to hold we require the origin to be within the 
obstacle, º. Therefore, the obstacle avoidance constraints must be formed from the obstacles’ 
perspective. 

4.2.2 Polar Sets for 4-D Obstacles 

This section advances the novel idea of applying avoidance in four dimensions, i.e. three spatial 
dimensions plus time.  Since the polar set form provides a flexible mechanism for constraining a 
vector to be outside a convex set, we apply it in four dimensions to avoid an obstacle that occupies a 
convex region in space for a defined interval in time.  It could also be extended to moving obstacles 
as well, provided the region in 4-D space remained convex.  However, since the most likely 
application in ATM is to handle a fixed spatial volume that closes for a particular time period, that 
extension has not yet been taken further. 

Here we consider obstacle avoidance using polar sets for a single aircraft planning. First we define a 
set of points, ÏÐ��� 1 Î�, that lies within the polar set of the obstacle defined by the (Cartesian + time) 
vertices stored in matrix h: 

� Ñ º Ò �À� j 1, � 1 º� Equation 58 

º� Ó 2v|Õv, �Ö < 1,   0 � 1 º4 Equation 59 

º � 2�|×� < 14 Equation 60 

º� � 2�|Ø�, � � ×À�, � j 0, �À¹ � 14 Equation 61 
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Where �Ù is the number of vertices of the obstacle, Ú�v� is row v of matrix ×À, and �� is the number 
of time- points along the trajectory where we enforce the constraints. 

Next we ensure that the aircraft remains outside of the obstacle (within the polar set) at each 
evaluation time point: 

Where �ÛÜÝ is a time in the middle of the interval during which the region is closed.  For stationary 

obstacles the final term is simply �ÛÜÝ. 
As the constraints are only enforced at the evaluation points, there is a risk of the trajectory cutting 
into the obstacle between two adjacent time samples.  To mitigate this problem, we also constrain the 
point �Ð to satisfy the same avoidance criteria at the previous timestep: 

Applying the above formulation for a single aircraft to a single obstacle we can see the possible 
effects of the obstacles temporal nature on the aircraft trajectories. Figure 13 shows 3 examples of 4-
D obstacle avoidance trajectories, each trajectory is shown projected into the X-Y plane at two time 
points, the first (upper) plot shows the trajectory during the period that the obstacle must be avoided 
and the second (lower) plot shows the complete trajectory including the period where the obstacle no 
longer needs to be avoided. Figure 13a the case where the trajectory passes the obstacle during the 
initial period and is equivalent to the 3-D avoidance trajectory. Figure 13b shows the case where the 
trajectory avoids the obstacle during the initial time period but then cuts the corner once the obstacle 
can be ignored. Figure 13c shows the case where the required deviation around the obstacle is so 
large that it is “cheaper” to wait until such a time that the trajectory can pass straight through the 
obstacle; the length of the path prior in the first period is due to the weightings in the cost function 
favouring a minimum time solution, by constantly accelerating whilst waiting for the obstacle to 
disappear the time required after that point can then be minimized. 

   

(a) (b) (c) 

Figure 13: Example 4-D obstacle avoidance trajectories 

Ú�v�ÏÐ��� < 10   v 1 21. . �Ù4, � 1 21. . ��4 Equation 62 

ÏÐ���À ����� ! �ÛÜÝ���� ! �ÛÜÝ � j 1    0  � 1 21. . ��4 Equation 63 

� �Ð��, ���	��, � ! 1� ! 	ÛÜÝ��, � ! 1���

&' j 1 0 � 1 22. . ��4 Equation 64 
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This concept can be readily extended to multiple obstacles. Defining an arbitrary MSA we can require 
an aircraft to avoid multiple sectors if, for example, they are closed or reaching their capacity limits. 
Figure 14 presents an example of multiple 4-D obstacles: Figure 14a shows the initial trajectory as the 
aircraft avoids two obstacles/sectors, after this point the hexagonal sector is no longer blocked, 
allowing the trajectory to pass through that sector as shown in Figure 14b. Finally the other sector is 
also opened (at the point shown in Figure 14b) and the aircraft continues to its destination (Figure 
14c). 

(a) (b) (c) 

Figure 14: Example of multiple 4-D obstacles 

4.3 Conflict Resolution Sense Constraints 

First we generalize the polar set obstacle avoidance presented in above to multiple vehicles.  This is 
challenging as the collocation form of the problem allows different timescales for different vehicles, i.e. ����1�  Þ  ����2� .  The 4-D avoidance form now enables us to enforce avoidance between aircraft 

without needing to require them all to have a common set of time steps.  This leads to a formulation 
similar to that used for temporal sense constraints using MILP, in which all pairs of samples are 
required to avoid each other either spatially or temporally.  A similar extension to constraint sense of 
resolution is therefore available and will be investigated later in this section.   

The avoidance constraints are developed below, initially just ensuring that all (other) aircraft �# avoid 
the planning aircraft, �', at time �', i.e. �' and �' are fixed as illustrated in Figure 15. Fixing �' and �' 
is purely to simplify the notation but is easily extended to ensure all aircraft avoid all other aircraft. 

 

Figure 15: Illustration of vehicular obstacle for multi-vehicle avoidance obstacle 

In Figure 15, the origin is shown as the location of �', at time ¦', it should be noted that the vertical 
direction is time and not a spatial dimension. The trajectory of �# is shown as a series of connected 
(solid blue) nodes and we wish to define an obstacle between ¦# and ¦# ! 1. The diameter of the 
cylinder between the two time-points is representative of a 2-D spatial avoidance constraint, i.e. the 
avoidance distance, ß. Similarly, the height of the cylinder, T, represents the period of time that the 

spatial constraint must be fulfilled. �� is the time of an arbitrary from point ¦', while T is the total time 
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between ¦# and ¦# ! 1. Finally, �	 is the distance between ��', ¦'� and ��#, ¦'� as projected from ¦#; 
and �� is the time between ¦' and ¦#. 
To enforce avoidance at time �' of the trajectory of aircraft �', it is necessary to estimate the position 

of all other aircraft, �#Ì21, … ��4: �' Þ �#, at this time, however, as time is discretized separately over 

each trajectory we do not know which evaluation point in the trajectory of �# is closest, forcing us to 
evaluate the relative position between �' at ¦', and �# at ¦#Ì22, … �Ð4: 

�	��#, ¦#, �� � 	��#, ¦', �� ! 	����� 0 �#Ì21, … ��4, ¦#Ì22, … ��4, �Ì21, … �
4 Equation 65 

Where 	��#, ¦', �� is the location of �# at �' in the ��© (spatial) dimension and 	����� is the position of �' at the same time and dimension. The 	��#, ¦', �� term can be found by interpolating between ¦', 
and ¦#: 

	��#, ¦#, �� � 	��#, ¦# ! 1, �� � ∆	��#, ¦#, ��∆���#, ¦#� Equation 66 

Where ∆	 is the vector between the location of �# at ¦#and ¦# ! 1: 
∆	��#, ¦#, �� � 	��#, ¦#, �� ! 	��#, ¦# ! 1, �� Equation 67 

And ∆� is the normalized time between ¦' and ¦#: 
∆���#, ¦#� � ��¦'� ! ��¦# ! 1, �#���¦#, �#� ! ��¦# ! 1, �#� Equation 68 

Normalizing time allows us to explicitly include the length of the trajectory (total time) as a variable in 
the optimization. 

If we express the spatial constraint such that we require the normalized spatial distance (as a function 
of the minimum separation distance) between aircraft to be greater than 1, and similarly that the 
normalized temporal distance (as a function of the time between ¦# and ¦#-1) to also be greater than 
1, then the constraint is: 

â:�	:# ßã2�� Åã ä Ñ C!1, 1E# Equation 69 

And the vertices of our obstacle are: 

× � µ 1 11 !1!1 1!1 !1· Equation 70 

Then using Equation 62 we can define a point, �, that lies in the polar set of ×, i.e. � Ì ×�: 
× å��¦#, �#, 1���¦#, �#, 2�æ < 1 Equation 71 

All that remains is to enforce the relationship (from Equation 63) between the point, �, in the polar set 
and the current state, 2�	, �4: 

���#, ¦#, 1� :�	��#, ¦#�:#ß����#, ¦#, 2� 2¦' ! ��¦#, �#� ! ��¦# ! 1, �#���¦#, �#� ! ��¦# ! 1, �#�    j 1 Equation 72 
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Finally, we enforce the above conditions for all aircraft relative to �' at all time-points along the 
trajectory of �#, i.e: 

0 �#Ì21, … ��4, ¦#Ì22, … ��4, �Ì21, … �
4 � �' Þ �# Equation 73 

The above conditions can easily be applied to all aircraft at all time-steps, i.e. �' and ¦' are no longer 
fixed by: 

• additionally indexing 	, �	, � and � over �' and ¦'; 
• enforcing the constraints over for all �' and ¦' as well as all the previous conditions, i.e.: 

0 �'Ì21, … ��4, ¦'Ì22, … ��4, �#Ì21, … ��4, ¦#Ì22, … ��4, �Ì21, … �
4 � �' � �# Equation 74 

4.3.1 Vertical Resolution 

Fixing the MILP avoidance binaries is equivalent to removing vertices from the polar set in the 
collocation formulation. Consider the example in Figure 12 which shows a flat, square obstacle and its 
polar equivalent. Figure 16 shows that tightening of one constraint, i.e. forcing the trajectory to pass 
around the remaining 3 sides, is equivalent to removing a vertex from the polar set. This result can be 
extended to n-dimensions. 

 

 

(a) Cartesian Obstacle (b) Polar Obstacle 

Figure 16: Comparison of MILP and collocation sense constraints 

As the polar set of the obstacle is defined as containing the origin, then if we restrict the location of 
the polar-point of the aircraft’s location such that it must lie to one side of the origin, we force the 
vehicle to pass to that side of the obstacle. An example of constraining the sense of the conflict is 
presented in Figure 17a and Figure 17b, in this case we have introduced an additional constraint 
restricting the location of the polar-point to be less than or greater than zero respectively, e.g.: 

Where ���', 1� is the coordinate of the point in the polar set that corresponds to the vehicles 
x-coordinate. 

1

2

3

1

2

3

��¦', 1� < 0 0 ¦'Ì22, … ��4 Equation 75 
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(a) Pass Left (b) Pass Right 

Figure 17: Examples of collocation sense constraints 

4.3.2 Temporal Resolution 

Constraining one flight to pass ahead or behind another has been implemented in 2-D + time. In 
addition to the multi-vehicle avoidance criteria defined in Section 4.3, ahead/behind can be 
implemented by restricting the time-dimension of the point, �, in the polar set in the same manner as 

used to enforce spatial sense constraints in Section 4.3.1. Equation 76 forces �' to pass ahead of �#. 

Implying, as before, that , �# cannot resolve its conflict with , �' by occupying the same space but 
earlier than a1. 

It should be noted that this has currently only been implemented in 2D, the extension to 3D would 
follow an identical approach to that described for MILP in Section 3.2.2. 

Figure 18 shows the effect of sense constraints on a multi-vehicle problem.  Figure 18a and Figure 
18c show two pairs of trajectories: in the first instance the constraints enforce F001 to pass ahead of 
F002 and vice versa in the second figure. Figure 18b and Figure 18d show the relative position of 
each aircraft at the time-steps of the other vehicle, i.e. after the interpolation to the other frame of 
reference has been performed, as well as indicating the conflict region (red circle). The relative 
location plots show that, with the exception of the instants discussed below, the trajectories remain 
conflict free at all times. 

It is apparent from Figure 18d that in some instances, as the constraints are only enforced at discrete 
points, a trajectory is not guaranteed to remain conflict free between time-steps. This was previously 
solved (in the single aircraft, single obstacle case) by enforcing the avoidance constraints at both the 
current time-step and the previous step in order to prevent corner-cutting. The current multi-vehicle 

formulation does not permit such a scheme due to the transformation of ��, �� into �	, however this 
transformation is not essential so a scheme to avoid corner-cutting could be implemented in the 
future. 

The constraints are only enforced relative to one aircraft (�'   �#) in order to reduce the number of 
variables in the optimization, however, we can see from Figure 18d that F002 plotted relative to F001, 
does not remain conflict free at all time-steps. This could be resolved by enforcing the constraints in 
both directions. 

  

��¦', �', ¦#, �#, 2� j 0 Equation 76 

��¦', �', ¦#, �#, 2� j 0 Equation 77 
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(a) Trajectories for two aircraft, unconstrained conflict 
resolution 

(b) Relative location of aircraft during 
unconstrained conflict resolution (showing 

conflict radius in red) 

  

(c) Trajectories for two aircraft conflict resolution with 
F002 ahead of F001 

(d) Relative location of aircraft during 
conflict resolution with F002 ahead of 
F001 (showing conflict radius in red) 

Figure 18: Example collocation sense constraints 

4.3.3 Velocity Resolution 

Due to the explicit inclusion of time as a decision variable, implementation of speed advisories in 
collocation can be achieved simply by fixing the location of the collocation points in all 3 spatial 
dimensions to force resolution in time (achieved by adjusting the velocities accordingly): 

Where the ¥	 term is a small tolerance included to ensure the trajectory remains dynamically feasible. 

Figure 19 shows a 2D example of velocity resolution using collocation. Figure 19a shows the original 
RBTs, i.e. the inputs to the optimization and Figure 19b shows the relative position of the two aircraft 
and it is clear that they pass closer that the avoidance distance indicated by the red circle. Figure 19c 
and Figure 19d show the conflict resolved with the trajectories resolved with the collocation model of 
Section 4.3 where it is clear that both aircraft have deviated from their RBTs in order to avoid one 

��¦ª , �� � ����, ¦ª , �� ¤ ¥	        0  � 1 21, … , ��4, g 1 21, … , �c4, � 1 21, … ,34 Equation 78 
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another. Figure 19e and Figure 19f show the same conflict resolution but including the constraint in 
Equation 78 which causes both aircraft to remain on their RBTs but to adjust their velocities to avoid a 
collision which is as expected. 

  

(a) RBTs (b)Relative separation of RBTs 

  

(c) Spatial Resolution (d)Relative separation of spatially 
resolved trajectories 

  

(e) Velocity Resolution (f)Relative separation of velocity 
resolution 

Figure 19: Collocation velocity resolution  (2D) 

A detailed comparison at Figure 19a and Figure 19e shows that the location of the evaluation points 
have moved in the resolved trajectory and the relative position plots clearly show that the two aircraft 
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now avoid each other. As further evidence of the effect of the additional constraint we can consider 
the duration of the aircraft trajectories, these are shown in Table 2. Looking at the trajectory durations, 
it is clear that: 

• the spatial resolution results in only a very small increase compared to the RBTs; 

• the velocity resolution increases the trajectory durations to a greater extent but that the total 
increase is less than 10% of the original, conflicting trajectories. 

 Trajectory Duration / s 

Conflict resolution a1 a2 Total 

None (Figure 19a) 17.90 11.58 29.48 

Spatial (Figure 19c) 17.93 11.75 29.68 

Velocity (Figure 19e) 17.91 14.46 32.37 

Table 2: Trajectory lengths and optimization solution times for results in Figure 19 
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5 Computational Complexity 

It should be noted that an initial assessment of the additional computational complexity imposed by 
each algorithm is included in the document. However, the complexity comparisons made are based 
on very limited test runs and a more comprehensive study of the relative performance of the different 
algorithms remains to be performed. All models were run on an Intel quad-core P4, 3.4GHz PC with 
3GB RAM running windows XP; MATLAB® was used for data processing with AMPL as an interface 
to CPLEX and IPOPT solvers for the MILP and collocation models, respectively. 

5.1 Sense Constraints 

Table 3 presents some typical solution times for some example two aircraft avoidance problems, with 
and without sense constraints.  

The MILP results show an unusual pattern: by adding additional constraints, the solution time 
improves.  This is due to the way they are implemented by fixing some of the variables thus reducing 
the size of the problem space. It should also be noted that the addition of the sense constraints (the 
last two lines of the table) increase the solution time again, due to the extra variables needed for 
avoidance between different time steps. 

There are too few collocation results to draw any firm conclusions.  The spread of the times is again 
likely to be a function of how close the initial guess was to the final solution. 

Comparing the MILP and Collocation results it appears that the MILP optimizer is faster, although it 
should be noted that in the unconstrained case this is not true but also that the collocation method 
has not yet been extended to 3D.  

Scenario 

Solution Time (s) 

MILP 

(3D) 

Collocation 

(2D + time) 

Unconstrained 13.09 9.72 

Pass Left (single vehicle) N/A 2.45 

Pass Right (single vehicle) N/A 1.14 

Vertical Resolution 0.34 N/A 

F001 over F002 0.39 N/A 

F002 over F001 0.19 N/A 

Horizontal Resolution 1.19 N/A 

Resolve Horizontally with F001 
ahead of F002 

8.65 1.70 

Resolve Horizontally with F002 
ahead of F001 

2.20 2.46 

Velocity Resolution  0.95 (2D) 2.72 

Table 3: Example solution times for MILP and Collocation sense constraints 
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5.2 Avoidance of 4-D Obstacles 

The table below presents an initial comparison of the typical solution times for a variety of 4-D 
obstacle scenarios. As the scenarios are fairly similar (single aircraft, single obstacle) there is little 
variation in the solution time. The variation that is present is likely to be a function of how close the 
initial guess was to the final solution. 

Scenario Solution Time (s) 

Figure 13a 2.17 

Figure 13b 2.30 

Figure 13c 1.47 

Table 4: Comparison of computational complexity of various 4-D obstacle scenarios 

 



Project ID E.02.01.    Edition: 1.1 
D2 - Optimizer Algorithms for Supervisory Control : Enabling Supervisor Input  

37 of 38 

6 Conclusions 

A variety of algorithms for supervisor interaction with optimizations have already been demonstrated. 
The main body of work to date has focussed on enabling MSC (as the supervisor) input as this was 
the area identified as having the most richness to explore different solutions. 

Two different implementations of the MSC model have been implemented. High-level sense 
constraints to allow either vertical (above/below), temporal (ahead/behind) or a velocity resolution to a 
conflict have been developed for both models. Constraints have been developed for both models to 
ensure the trajectories remain conflict free between time-steps even when the time-step is large 
compared to the avoidance distance. 

As the collocation method uses an interior point optimizer to solve the problem, there is no guarantee 
of a globally optimal solution and it has been observed that the method is sensitive to the initial guess 
and also the number of collocation and evaluation points. Alternative methods, such as potential fields 
or RRTs, to generate an initial feasible solution could therefore improve the optimizer performance. 
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