14,326 research outputs found

    A Generative Product-of-Filters Model of Audio

    Full text link
    We propose the product-of-filters (PoF) model, a generative model that decomposes audio spectra as sparse linear combinations of "filters" in the log-spectral domain. PoF makes similar assumptions to those used in the classic homomorphic filtering approach to signal processing, but replaces hand-designed decompositions built of basic signal processing operations with a learned decomposition based on statistical inference. This paper formulates the PoF model and derives a mean-field method for posterior inference and a variational EM algorithm to estimate the model's free parameters. We demonstrate PoF's potential for audio processing on a bandwidth expansion task, and show that PoF can serve as an effective unsupervised feature extractor for a speaker identification task.Comment: ICLR 2014 conference-track submission. Added link to the source cod

    Spectral density affects the intelligibility of tone-vocoded speech: Implications for cochlear implant simulations

    Get PDF
    For small numbers of channels, tone vocoders using low envelope cutoff frequencies are less intelligible than noise vocoders, even though the noise carriers introduce random fluctuations into the crucial envelope information. Here it is shown that using tone carriers with a denser spectrum improves performance considerably over typical tone vocoders, at least equalling, and often surpassing, the performance possible with noise vocoders. In short, the spectral sparseness of tone vocoded sounds for low channel numbers, separate from the degradations introduced by using only a small number of channels, is an important limitation on the intelligibility of tone-vocoded speech

    The Use of EEG Signals For Biometric Person Recognition

    Get PDF
    This work is devoted to investigating EEG-based biometric recognition systems. One potential advantage of using EEG signals for person recognition is the difficulty in generating artificial signals with biometric characteristics, thus making the spoofing of EEG-based biometric systems a challenging task. However, more works needs to be done to overcome certain drawbacks that currently prevent the adoption of EEG biometrics in real-life scenarios: 1) usually large number of employed sensors, 2) still relatively low recognition rates (compared with some other biometric modalities), 3) the template ageing effect. The existing shortcomings of EEG biometrics and their possible solutions are addressed from three main perspectives in the thesis: pre-processing, feature extraction and pattern classification. In pre-processing, task (stimuli) sensitivity and noise removal are investigated and discussed in separated chapters. For feature extraction, four novel features are proposed; for pattern classification, a new quality filtering method, and a novel instance-based learning algorithm are described in respective chapters. A self-collected database (Mobile Sensor Database) is employed to investigate some important biometric specified effects (e.g. the template ageing effect; using low-cost sensor for recognition). In the research for pre-processing, a training data accumulation scheme is developed, which improves the recognition performance by combining the data of different mental tasks for training; a new wavelet-based de-noising method is developed, its effectiveness in person identification is found to be considerable. Two novel features based on Empirical Mode Decomposition and Hilbert Transform are developed, which provided the best biometric performance amongst all the newly proposed features and other state-of-the-art features reported in the thesis; the other two newly developed wavelet-based features, while having slightly lower recognition accuracies, were computationally more efficient. The quality filtering algorithm is designed to employ the most informative EEG signal segments: experimental results indicate using a small subset of the available data for feature training could receive reasonable improvement in identification rate. The proposed instance-based template reconstruction learning algorithm has shown significant effectiveness when tested using both the publicly available and self-collected databases
    • …
    corecore