2 research outputs found

    Neuroimage

    Get PDF
    The brain can be considered as an information processing network, where complex behavior manifests as a result of communication between large-scale functional systems such as visual and default mode networks. As the communication between brain regions occurs through underlying anatomical pathways, it is important to define a "traffic pattern" that properly describes how the regions exchange information. Empirically, the choice of the traffic pattern can be made based on how well the functional connectivity between regions matches the structural pathways equipped with that traffic pattern. In this paper, we present a multimodal connectomics paradigm utilizing graph matching to measure similarity between structural and functional connectomes (derived from dMRI and fMRI data) at node, system, and connectome level. Through an investigation of the brain's structure-function relationship over a large cohort of 641 healthy developmental participants aged 8-22 years, we demonstrate that communicability as the traffic pattern describes the functional connectivity of the brain best, with large-scale systems having significant agreement between their structural and functional connectivity patterns. Notably, matching between structural and functional connectivity for the functionally specialized modular systems such as visual and motor networks are higher as compared to other more integrated systems. Additionally, we show that the negative functional connectivity between the default mode network (DMN) and motor, frontoparietal, attention, and visual networks is significantly associated with its underlying structural connectivity, highlighting the counterbalance between functional activation patterns of DMN and other systems. Finally, we investigated sex difference and developmental changes in brain and observed that similarity between structure and function changes with development.S10 OD023495/CD/ODCDC CDC HHS/United StatesR01 HD089390/HD/NICHD NIH HHS/United StatesR01 NS096606/NS/NINDS NIH HHS/United StatesS10 OD023495/OD/NIH HHS/United StatesRC2 MH089983/MH/NIMH NIH HHS/United States2020-10-01T00:00:00Z31141738PMC66889608401vault:3371

    Comparison of brain networks with unknown correspondences

    Get PDF
    Graph theory has drawn a lot of attention in the field of Neuroscience during the last decade, mainly due to the abundance of tools that it provides to explore the interactions of elements in a complex network like the brain. The local and global organization of a brain network can shed light on mechanisms of complex cognitive functions, while disruptions within the network can be linked to neurodevelopmental disorders. In this effort, the construction of a representative brain network for each individual is critical for further analysis. Additionally, graph comparison is an essential step for inference and classification analyses on brain graphs. In this work we explore a method based on graph edit distance for evaluating graph similarity, when correspondences between network elements are unknown due to different underlying subdivisions of the brain. We test this method on 30 unrelated subjects as well as 40 twin pairs and show that this method can accurately reflect the higher similarity between two related networks compared to unrelated ones, while identifying node correspondences
    corecore