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Abstract. Graph theory has drawn a lot of attention in the field of Neu-
roscience during the last decade, mainly due to the abundance of tools
that it provides to explore the interactions of elements in a complex
network like the brain. The local and global organization of a brain net-
work can shed light on mechanisms of complex cognitive functions, while
disruptions within the network can be linked to neurodevelopmental dis-
orders. In this effort, the construction of a representative brain network
for each individual is critical for further analysis. Additionally, graph
comparison is an essential step for inference and classification analyses
on brain graphs. In this work we explore a method based on graph edit
distance for evaluating graph similarity, when correspondences between
network elements are unknown due to different underlying subdivisions
of the brain. We test this method on 30 unrelated subjects as well as 40
twin pairs and show that this method can accurately reflect the higher
similarity between two related networks compared to unrelated ones,
while identifying node correspondences.

1 Introduction

The term human connectome was first coined a decade ago by [1] and [2] to
describe the structural white matter connections, which can be mapped with ad-
vanced neuroimaging techniques. Similarly, the putative functional connections
between spatially remote regions can be identified with functional neuroimaging
or electrophysiological recording techniques [3]. The resulting connectomes com-
prise complete maps of the brain’s structural or functional connections at the
macro-scale and embody the notion of representing all connections within the
brain as graphs. Analysis of these graphs opens new experimental and theoret-
ical avenues in several areas of neuroscience, since brain connectivity is critical
to neurodevelopment, neurodegeneration and the neural basis of cognition [4,5].
Looking at brain connectivity from a network perspective takes advantage of
modern graph-theoretic approaches to study the brain and allows the discov-
ery of patterns that emerge as an outcome of highly selective and structured
coupling between network elements [4].

Since most machine learning techniques, including classifiers, regressors and
kernel machines, entail some sort of (dis)similarity measures, the definition of
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a meaningful similarity measure is of major importance for the inference pro-
cedure. Nodes in brain networks represent regions obtained with a certain par-
cellation technique, which often does not account for variations in anatomy and
function of individual brains [6]. Individual-based parcellations are therefore be-
ing sought for the delineation of boundaries between nodes in a biologically
meaningful way - such as functional task-based or connectivity-based parcella-
tions in individual subject’s space - which, however, give rise to unknown cor-
respondences. Hence, a desirable property of the similarity measure is to allow
comparisons between graphs where node correspondence is not guaranteed.

Methods based on the embedding of graphs to obtain a general vector rep-
resentation have been widely used [7] to assess graph similarity. However, these
methods, also referred to as “bag of edges” [8], discard all information about
the structure of the graph and cannot be applied to graphs with distinct sets of
nodes. Another group of methods is based on the notion of similarity between
two objects that is evaluated on an implicitly induced feature space [9,10]. Most
generic graph kernels compare features of small subgraphs extracted from the
original graph leading to an inherently local perspective, which may fail to cap-
ture global properties of graphs [11]. Alternatively, graph invariants like small-
world index, modularity and global efficiency, which have been widely used in
neuroscience studies [12], significantly reduce the dimensionality of the graph
comparison problem, but are sometimes hard to interpret biologically and dis-
card a great amount of local information.

We propose to use graph edit distance to evaluate brain graph similarity,
since this method is able to match the graphs directly in their domain [13].
This approach is, therefore, able to model structural variation of graphs in a
very intuitive and illustrative way, while considering both their structural and
semantic information. However, the structural similarity of two graphs is only
correctly reflected by graph edit distance, if the underlying costs are defined
appropriately, a property that has been disregarded in its limited applications
on brain graphs [14]. In this work we developed an efficient version of graph
edit distance tailored for brain graphs, which takes into account both spatial
constraints as well as local network information as a node’s “signature”. We
evaluate this method on the structural and functional networks of 30 unrelated
healthy subjects and 40 female twin pairs and show that our approach can
successfully reflect similarities between corresponding networks.

2 Methods

2.1 Dataset and preprocessing

The minimally preprocessed dataset was provided by the Human Connectome
Project [15]. We used the diffusion MRI data of 30 unrelated healthy individ-
uals, as well as the diffusion (dMRI) and functional (fMRI) data of 40 female
twin pairs (20 monozygotic and 20 dizygotic). All subject data were registered
to a common MNI space and the cortical surface of each individual brain was
extracted and represented as a triangular mesh. Subsequently, a probabilistic
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Fig. 1. Network construction from diffusion or functional MRI data. A brain parcel-
lation is required to specify the network nodes. Each node then represents a single
region from the parcellation. Probabilistic tractography is used to create a map of
white matter connections from dMRI images. The number of streamlines (for dMRI)
or statistical dependency of representative timeseries (for fMRI) is used to estimate
the structural and functional weights, respectively, yielding a labeled brain network.

tractography algorithm [16] was used to estimate the neural pathways from sev-
eral seed points (5000 per vertex of the cortical surface mesh), yielding a number
of streamlines connecting the seed point with the rest of the vertices. The fMRI
data were also preprocessed to remove spatial artifacts and distortions and were,
finally, converted to a standard “grayordinate” space to facilitate cross-subject
comparisons.

2.2 Network construction

An undirected, labeled graphG ∈ G can be described with a tupleG = (V, E , µ, ν),
where V is the finite set of nodes, E ⊆ V×V is the set of edges, µ : V → LV is the
node labeling function and ν : E → LE is the edge labeling function. It should
be noted that a graph is a formal mathematical representation of a network, but
the two terms can be used interchangeably in this context. An overview of the
steps required to construct a brain network is illustrated in Figure 1.

Nodes in brain space. In this work, the nodes are defined using connectivity-
driven parcellations performed in each individual’s brain space and represent
contiguous sets of voxels [17]. Data-driven parcellations aim at defining func-
tionally coherent regions based on their structural or functional connectivity
profile. The number of parcels q may vary, allowing the construction of networks
at different resolutions. In this work we choose q = 50. The incorporation of
functional information in the parcellation is more likely to result in more homo-
geneous regions that better represent connectivity.

Edge weights. We define the edge weights of structural networks as the
number of streamlines connecting two regions. Two nodes u and v are connected
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with an edge e = (u, v) if there is at least one streamline with endpoints in
ROI(u) and ROI(v), where ROI(u) is the parcel associated with a node u and
S(u) its cortical surface (i.e. number of vertices within the parcel). The weight

wuv =
2

S(u) + S(v)

∑
f∈Fe

log(n(f)) (1)

captures the connection density between the end-nodes u and v, where Fe is
the set of all fibers connecting the two regions and n(f) the number of streamlines
connecting two voxels from ROI(u) and ROI(v). The sum S(u) +S(v) corrects
for the variable size of cortical ROIs represented by the network nodes [18], while
the log reduces the bias against longer streamlines [19].

For the functional networks the mean timeseries of each ROI is used as the
representative timeseries, while partial correlation is chosen to define the edge
weights. Partial correlation discards the indirect connections that are preserved
by its prevalent competitor, Pearson’s correlation, and is known to be less prone
to noise. It can be computed from the inverse of the empirical covariance matrix,
P = Σ−1, as wuv = −Puv(PuuPvv)−1/2.

2.3 Assessing similarity

Graph edit distance (GED) is the minimum-weight sequence of edit operations
required to transform one graph into another and is defined directly in their
domain G as a non-negative function dGED : G × G → R+. The basic edit
operations that we consider valid for both nodes and edges are: (1) substitution:
u → v, with u ∈ V1 and v ∈ V2, (2) deletion: u → ε and (3) insertion: ε → v.
The edit distance between G1 and G2 is then defined as

dGED(G1, G2) = min
e∈E(G1,G2)

∑
i

c(ei) (2)

where c(ei) is the cost of an edit sequence from G1 to G2 and E the finite set
of edit sequences from G1 to G2. In order to better reflect differences between
networks, both structural and egonet-based features are incorporated in the edit
costs. A node’s egonet is the induced subgraph of its neighbouring nodes, hence
the egonet-based features provide an accurate signature of each node by means
of its connections to the rest of the network.

Node edit operations. The cost of node substitution, ci,j , consists of a
spatial and a feature component. The spatial component is calculated as the
Euclidean distance of the node coordinates (coordinates of the representative
voxel in MNI space) normalized by the diameter of the MNI transformed sphere

mesh, δ, using deuclidean(uP , uQ) = ‖P−Q‖
δ . The egonet-based features taken

into account for the feature component are the mean and standard deviation of
the degree, strength and clustering coefficient of the neighbouring nodes. The
strength of a vertex u is given by Su =

∑
v wuv, where the sum is over all edges

attached to a node. The local clustering coefficient for an undirected graph is
given by:
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Fig. 2. Estimating graph similarity between different networks. The first two networks
belong to the same subject with a different underlying parcellation, whereas the third
network represents connectivity for a different subject using the same parcellation as
the first one. It can be observed that the distance between the networks of the same
subject is lower than the distance between networks from different subjects.

cu =
1

deg(u)(deg(u)− 1))

∑
vw

(wuvwuwwvw)1/3 (3)

The feature component is then calculated using the Canberra distance [20],

which is given by dcanberra(uP , uQ) =
∑d
i=1

|Pi−Qi|
|Pi|+|Qi| for d -dimensional feature

vectors of nodes uP and uQ. Canberra distance is known to be very discriminative
due to its sensitivity to small changes near zero, as well as the normalization of
the absolute difference of individual comparisons.

The spatial component of the insertion cost, cε,i, and deletion cost, ci,ε, is 1.
The feature component corresponds to the betweenness centrality of a node in
the network. Betweenness centrality is given by:

gu =
∑
s6=u6=t

σst(u)

σst
(4)

where σst is the number of shortest paths from node s to node t while σst(u)
is the number of shortest paths through u. This reflects the influence that a
certain node has on the network, since it is assumed that information transfer
follows the shortest paths.

Edge edit operations. The edge edit cost of an addition/deletion is 1,
whereas the edit cost of a substitution is equal to the Canberra distance between
the edge weights. The latter serves the purpose of normalizing the cost of absolute
difference of edge weights.

The time and space complexity of an exact GED computation is exponen-
tial in the number of nodes involved, making computation very expensive for
brain graphs, whose size is in the range of hundreds or thousands of nodes. In
our framework, graph edit distance is normalised so that dGED ∈ [0, 1], where
dGED = 0 indicates that the two graphs are identical.
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2.4 Assignment problem

As mentioned previously, it is very costly to calculate the exact GED, since its
complexity is exponential to the number of nodes. However, the Hungarian al-
gorithm, presented in [21], can provide a fast, locally optimal solution to the
exact GED computation. This algorithm is known to solve the assignment prob-
lem in cubic time and find the lowest cost assignment between objects from two
different sets (see Fig. 2). The same algorithm can be used to calculate a local
optimum solution to the exact GED, by constructing the following cost matrix
of order n+m, where |V(G1)| = n and |V(G2)| = m:

C =



substitutions︷ ︸︸ ︷
c1,1 . . . c1,m

︷ ︸︸ ︷
c1,ε . . . ∞

...
. . .

...
...

. . .
...

cn,1 . . . cn,m ∞ . . . cn,ε
cε,1 . . . ∞ 0 . . . 0

...
. . .

...
...

. . .
...

︸ ︷︷ ︸
insertions

∞ . . . cε,m ︸ ︷︷ ︸0 . . . 0



 deletions

 zeros

Nevertheless, the above cost matrix does not take the edge edit operations
into account. These need to be considered to achieve a better approximation of
true edit distance. This is accomplished by adding to each node substitution ci,j
the minimum sum of edge edit operation costs implied by this substitution and,
similarly, to each node insertion (deletion) the cost of all insertions (deletions)
of adjacent edges. The off-diagonal elements of the insertion and deletion cost
sub-matrices are set to infinity, since a node can be inserted/deleted only once.
The computational complexity of this method is O((n+m)3).

2.5 Tailoring GED for brain graphs

The aforementioned computations are applicable to any kind of graphs, and ex-
plore combinations that should be excluded in the special case of brain graphs.
Tailoring the GED computation for brain graphs would require the introduc-
tion of spatial constraints. Hence, substitutions, which inherently identify node
correspondences, should be penalized between nodes that are spatially remote
or lie in different hemispheres. In the current framework, only the n spatially
nearest neighbours of graph G2 are considered for substitution by a node in G1,
significantly reducing the computational time. Additionally, a weighting factor
α is introduced, which can be tuned depending on the application, in order to
control the effect of spatial and feature distance on the total edit distance.

In Algorithm 1, dedge(vi, uj) is the edge edit distance between the edges of
node vi from G1 and node uj from G2, and g(·) is given by Eq. ??.
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Algorithm 1 Construction of cost matrix for GED calculation

for i = 1 : n do
for j = 1 : m do

if uj ∈ neigh(vi) then
ci,j = α ∗ deuclidean(vi, uj) + (1− α) ∗ dcanberra(vi, uj) + dedge(vi, uj)

else
ci,j =∞

end if
end for
ci,ε = α+ (1− α) ∗ g(vi)

end for
for j = 1 : m do

cε,j = α+ (1− α) ∗ g(uj)
end for

Fig. 3. Boxplots for α ∈ [0.2, 0.5, 0.8] comparing within-subject (dark green) to
between-subject (light green) GED on structural networks derived from individual
parcellations. Permutation tests are performed and statistically significant differences
are indicated (p < 0.05*, p < 0.001**).

3 Results

The proposed method for brain graph comparison was tested in two different
settings. First, the method was applied on structural networks generated from
different single-subject parcellations to test whether within-subject similarities
are reflected with GED. The method was also applied on a dataset of 20 monozy-
gotic (MZ) and 20 dizygotic (DZ) pairs of female twins to explore within-pair
distances in comparison to distances between unrelated pairs of subjects.

3.1 Single-subject parcellations

Two different sets of structural networks were generated for 30 healthy unre-
lated individuals, which arise from different dMRI-driven subdivisions [17] of
the left hemisphere into 50 parcels. In this setting the impact of the number of
neighbours considered for node substitution as well as the spatial weight, α, are
explored (Fig. 3). From the explored parameters the best separation between
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Fig. 4. Boxplots comparing GED between twin pairs (dark blue) to unrelated pairs
(light blue) on structural (top) and functional (middle, bottom) networks derived from
single-subject parcellations. All parcellations comprise of 50 parcels.

within-subject and cross-subject distances is achieved for α = 0.5. This indi-
cates that it is important to incorporate both spatial and feature information
about each node, in order to obtain a meaningful distance measure for brain
networks. Additionally, it can be observed that increasing the number of neigh-
bours considered for substitution leads to an overall decrease in the calculated
distances, which is expected since nodes with more similar connectivity profile
can be located marginally further from each other. However, increasing the num-
ber of neighbours further than a certain value has only a minor impact on the
distances (results for nn = 7, 9 are very similar in all cases).

3.2 Twin data

In this set of experiments the GED algorithm was first applied to the structural
networks of MZ pairs. A permutation test (1000 permutations) was performed
between the pair distance and the average distance to unrelated subjects and the
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Fig. 5. Medial and lateral views of a monozygotic twin pair (left) and an unrelated
pair (right) with corresponding nodes highlighted with the same color. The size of the
nodes indicates the node edit distance.

results are summarized in Figure 4. It can be observed that GED is significantly
discriminative for MZ pairs, but the best separation is achieved for a ∈ [0.5, 0.8]
and nn = 7. The algorithm was also applied to the functional networks of both
MZ and DZ pairs. The boxplots for MZ twins show that GED yields good sep-
aration on functional networks as well (Fig. 4), with the best result in terms
of statistical separation achieved for α = 0.2, while this is not the case for DZ
twins. Fig. 5 shows an example MZ pair in comparison to an unrelated pair of
subjects. It can be observed that node distances are much smaller for the twin
pair in comparison to the unrelated pair.

At this point it should be mentioned that we present the results for q = 50,
but results look similar for higher dimensions.

4 Discussion

This work proposes a novel way of evaluating similarity between brain networks
based on graph edit distance, which incorporates both structural and semantic
information about the networks. Hence, it can be applied to networks with dif-
ferent sets or even different number of nodes. Additionally, it enforces spatial
constraints to the explored edit operations, reducing the computational time re-
quired for the distance calculation. Our approach was applied on healthy subjects
and twin pairs and was able to reflect similarities between networks representing
the same subject as well as monozygotic twin pairs that share the same genome.

As an extension of this work, different weights can be assigned to each net-
work feature according to their contribution to the task at hand. To provide
a complete framework for network comparison independent of the kind of net-
work or the application, the optimal parameters can then be chosen in a cross-
validation setting. Additionally, the node correspondences which are provided by
this algorithm along with the distance estimate can be used to explore network
dynamics in early brain development or neurodegenerative diseases.
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