4 research outputs found

    Deep learning application detecting SARS-CoV-2 key enzymes inhibitors.

    Get PDF
    The fast spread of the COVID-19 over the world pressured scientists to find its cures. Especially, with the disastrous results, it engendered from human life losses to long-term impacts on infected people's health and the huge financial losses. In addition to the massive efforts made by researchers and medicals on finding safe, smart, fast, and efficient methods to accurately make an early diagnosis of the COVID-19. Some researchers focused on finding drugs to treat the disease and its symptoms, others worked on creating effective vaccines, while several concentrated on finding inhibitors for the key enzymes of the virus, to reduce its spreading and reproduction inside the human body. These enzymes' inhibitors are usually found in aliments, plants, fungi, or even in some drugs. Since these inhibitors slow and halt the replication of the virus in the human body, they can help fight it at an early stage saving the patient from death risk. Moreover, if the human body's immune system gets rid of the virus at the early stage it can be spared from the disastrous sequels it may leave inside the patient's body. Our research aims to find aliments and plants that are rich in these inhibitors. In this paper, we developed a deep learning application that is trained with various aliments, plants, and drugs to detect if a component contains SARS-CoV-2 key inhibitor(s) intending to help them find more sources containing these inhibitors. The application is trained to identify various sources rich in thirteen coronavirus-2 key inhibitors. The sources are currently just aliments, plants, and seeds and the identification is done by their names

    Data-Intensive Computing in Smart Microgrids

    Get PDF
    Microgrids have recently emerged as the building block of a smart grid, combining distributed renewable energy sources, energy storage devices, and load management in order to improve power system reliability, enhance sustainable development, and reduce carbon emissions. At the same time, rapid advancements in sensor and metering technologies, wireless and network communication, as well as cloud and fog computing are leading to the collection and accumulation of large amounts of data (e.g., device status data, energy generation data, consumption data). The application of big data analysis techniques (e.g., forecasting, classification, clustering) on such data can optimize the power generation and operation in real time by accurately predicting electricity demands, discovering electricity consumption patterns, and developing dynamic pricing mechanisms. An efficient and intelligent analysis of the data will enable smart microgrids to detect and recover from failures quickly, respond to electricity demand swiftly, supply more reliable and economical energy, and enable customers to have more control over their energy use. Overall, data-intensive analytics can provide effective and efficient decision support for all of the producers, operators, customers, and regulators in smart microgrids, in order to achieve holistic smart energy management, including energy generation, transmission, distribution, and demand-side management. This book contains an assortment of relevant novel research contributions that provide real-world applications of data-intensive analytics in smart grids and contribute to the dissemination of new ideas in this area

    Advances in Artificial Intelligence: Models, Optimization, and Machine Learning

    Get PDF
    The present book contains all the articles accepted and published in the Special Issue “Advances in Artificial Intelligence: Models, Optimization, and Machine Learning” of the MDPI Mathematics journal, which covers a wide range of topics connected to the theory and applications of artificial intelligence and its subfields. These topics include, among others, deep learning and classic machine learning algorithms, neural modelling, architectures and learning algorithms, biologically inspired optimization algorithms, algorithms for autonomous driving, probabilistic models and Bayesian reasoning, intelligent agents and multiagent systems. We hope that the scientific results presented in this book will serve as valuable sources of documentation and inspiration for anyone willing to pursue research in artificial intelligence, machine learning and their widespread applications

    July 21, 2007 (Pages 3353-4040)

    Get PDF
    corecore