61 research outputs found

    Organ-Dedicated Molecular Imaging Systems

    Full text link
    [EN] In this review, we will cover both clinical and technical aspects of the advantages and disadvantages of organ specific (dedicated) molecular imaging (MI) systems, namely positron emission tomography (PET) and single photon emission computed tomography, including gamma cameras. This review will start with the introduction to the organ-dedicated MI systems. Thereafter, we will describe the differences and their advantages/disadvantages when compared with the standard large size scanners. We will review time evolution of dedicated systems, from first attempts to current scanners, and the ones that ended in clinical use. We will review later the state of the art of these systems for different organs, namely: breast, brain, heart, and prostate. We will also present the advantages offered by these systems as a function of the special application or field, such as in surgery, therapy assistance and assessment, etc. Their technological evolution will be introduced for each organ-based imager. Some of the advantages of dedicated devices are: higher sensitivity by placing the detectors closer to the organ, improved spatial resolution, better image contrast recovery (by reducing the noise from other organs), and also lower cost. Designing a complete ring-shaped dedicated PET scanner is sometimes difficult and limited angle tomography systems are preferable as they have more flexibility in placing the detectors around the body/organ. Examples of these geometries will be presented for breast, prostate and heart imaging. Recently achievable excellent time of flight capabilities below 300-ps full width at half of the maximum reduce significantly the impact of missing angles on the reconstructed images.This work was supported in part by the European Research Council through the European Union's Horizon 2020 Research and Innovation Program under Grant 695536, in part by the EU through the FP7 Program under Grant 603002, and in part by the Spanish Ministerio de Economia, Industria y Competitividad through PROSPET (DTS15/00152) funded by the Ministerio de Economia y Competitividad under Grant TEC2016-79884-C2-1-R.González Martínez, AJ.; Sánchez, F.; Benlloch Baviera, JM. (2018). Organ-Dedicated Molecular Imaging Systems. IEEE Transactions on Radiation and Plasma Medical Sciences. 2(5):388-403. https://doi.org/10.1109/TRPMS.2018.2846745S3884032

    Performance and Methodological Aspects in Positron Emission Tomography

    Get PDF
    Performance standards for Positron emission tomography (PET) were developed to be able to compare systems from different generations and manufacturers. This resulted in the NEMA methodology in North America and the IEC in Europe. In practices, the NEMA NU 2- 2001 is the method of choice today. These standardized methods allow assessment of the physical performance of new commercial dedicated PET/CT tomographs. The point spread in image formation is one of the factors that blur the image. The phenomenon is often called the partial volume effect. Several methods for correcting for partial volume are under research but no real agreement exists on how to solve it. The influence of the effect varies in different clinical settings and it is likely that new methods are needed to solve this problem. Most of the clinical PET work is done in the field of oncology. The whole body PET combined with a CT is the standard investigation today in oncology. Despite the progress in PET imaging technique visualization, especially quantification of small lesions is a challenge. In addition to partial volume, the movement of the object is a significant source of error. The main causes of movement are respiratory and cardiac motions. Most of the new commercial scanners are in addition to cardiac gating, also capable of respiratory gating and this technique has been used in patients with cancer of the thoracic region and patients being studied for the planning of radiation therapy. For routine cardiac applications such as assessment of viability and perfusion only cardiac gating has been used. However, the new targets such as plaque or molecular imaging of new therapies require better control of the cardiac motion also caused by respiratory motion. To overcome these problems in cardiac work, a dual gating approach has been proposed. In this study we investigated the physical performance of a new whole body PET/CT scanner with NEMA standard, compared methods for partial volume correction in PET studies of the brain and developed and tested a new robust method for dual cardiac-respiratory gated PET with phantom, animal and human data. Results from performance measurements showed the feasibility of the new scanner design in 2D and 3D whole body studies. Partial volume was corrected, but there is no best method among those tested as the correction also depends on the radiotracer and its distribution. New methods need to be developed for proper correction. The dual gating algorithm generated is shown to handle dual-gated data, preserving quantification and clearly eliminating the majority of contraction and respiration movementSiirretty Doriast

    Algorithmic Analysis Techniques for Molecular Imaging

    Get PDF
    This study addresses image processing techniques for two medical imaging modalities: Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI), which can be used in studies of human body functions and anatomy in a non-invasive manner. In PET, the so-called Partial Volume Effect (PVE) is caused by low spatial resolution of the modality. The efficiency of a set of PVE-correction methods is evaluated in the present study. These methods use information about tissue borders which have been acquired with the MRI technique. As another technique, a novel method is proposed for MRI brain image segmen- tation. A standard way of brain MRI is to use spatial prior information in image segmentation. While this works for adults and healthy neonates, the large variations in premature infants preclude its direct application. The proposed technique can be applied to both healthy and non-healthy premature infant brain MR images. Diffusion Weighted Imaging (DWI) is a MRI-based technique that can be used to create images for measuring physiological properties of cells on the structural level. We optimise the scanning parameters of DWI so that the required acquisition time can be reduced while still maintaining good image quality. In the present work, PVE correction methods, and physiological DWI models are evaluated in terms of repeatabilityof the results. This gives in- formation on the reliability of the measures given by the methods. The evaluations are done using physical phantom objects, correlation measure- ments against expert segmentations, computer simulations with realistic noise modelling, and with repeated measurements conducted on real pa- tients. In PET, the applicability and selection of a suitable partial volume correction method was found to depend on the target application. For MRI, the data-driven segmentation offers an alternative when using spatial prior is not feasible. For DWI, the distribution of b-values turns out to be a central factor affecting the time-quality ratio of the DWI acquisition. An optimal b-value distribution was determined. This helps to shorten the imaging time without hampering the diagnostic accuracy.Siirretty Doriast

    Optimal reconstruction algorithms for high-resolution positron emission tomography

    Get PDF
    Lammertsma, A.A. [Promotor]Boellaard, R. [Copromotor

    PET/MR — a rapidly growing technique of imaging in oncology and neurology

    Get PDF
    INTRODUCTION: The combination of positron emission tomography (PET) and magnetic resonance (MR) has become a subject of interest for researchers in the recent several years. Positron emission tomography in combination with magnetic resonance (PET/MR) is the most recent imaging technique classified in the so called hybrid systems category. AIM: This review briefly discusses the development history of PET/MR scanners, the principle of their operation, of tandem systems, as well as fully integrated devices. Further, it summarizes recent reports on the application of PET/MR scans and their possible future role in oncological and non-oncological diagnostics. CONCLUSIONS: Recent reports regarding the application of PET/MR scanners show huge potential of simultaneously received images, which exceed the advantages of either of those scans used separately. However, the results so far remain uncertain and require further investigations, especially in terms of clinical studies, not only for scientific purposes.      INTRODUCTION: The combination of positron emission tomography (PET) and magnetic resonance (MR) has become a subject of interest for researchers in the recent several years. Positron emission tomography in combination with magnetic resonance (PET/MR) is the most recent imaging technique classified in the so called hybrid systems category. AIM: This review briefly discusses the development history of PET/MR scanners, the principle of their operation, of tandem systems, as well as fully integrated devices. Further, it summarizes recent reports on the application of PET/MR scans and their possible future role in oncological and non-oncological diagnostics. CONCLUSIONS: Recent reports regarding the application of PET/MR scanners show huge potential of simultaneously received images, which exceed the advantages of either of those scans used separately. However, the results so far remain uncertain and require further investigations, especially in terms of clinical studies, not only for scientific purposes

    Robust Algorithms for Registration of 3D Images of Human Brain

    Get PDF
    This thesis is concerned with the process of automatically aligning 3D medical images of human brain. It concentrates on rigid-body matching of Positron Emission Tomography images (PET) and Magnetic Resonance images (MR) within one patient and on non-linear matching of PET images of different patients. In recent years, mutual information has proved to be an excellent criterion for automatic registration of intra-individual images from different modalities. We propose and evaluate a method that combines a multi-resolution optimization of mutual information with an efficient segmentation of background voxels and a modified principal axes algorithm. We show that an acceleration factor of 6-7 can be achieved without loss of accuracy and that the method significantly reduces the rate of unsuccessful registrations. Emphasis was also laid on creation of an automatic registration system that could be used routinely in clinical environment. Non-linear registration tries to reduce the inter-individual variability of shape and structure between two brain images by deforming one image so that homologous regions in both images get aligned. It is an important step of many procedures in medical image processing and analysis. We present a novel algorithm for an automatic non-linear registration of PET images based on hierarchical volume subdivisions and local affine optimizations. It produces a C2-continuous deformation function and guarantees that the deformation is one-to-one. Performance of the algorithm was evaluated on more than 600 clinical PET images
    • …
    corecore