334 research outputs found

    APCodec: A Neural Audio Codec with Parallel Amplitude and Phase Spectrum Encoding and Decoding

    Full text link
    This paper introduces a novel neural audio codec targeting high waveform sampling rates and low bitrates named APCodec, which seamlessly integrates the strengths of parametric codecs and waveform codecs. The APCodec revolutionizes the process of audio encoding and decoding by concurrently handling the amplitude and phase spectra as audio parametric characteristics like parametric codecs. It is composed of an encoder and a decoder with the modified ConvNeXt v2 network as the backbone, connected by a quantizer based on the residual vector quantization (RVQ) mechanism. The encoder compresses the audio amplitude and phase spectra in parallel, amalgamating them into a continuous latent code at a reduced temporal resolution. This code is subsequently quantized by the quantizer. Ultimately, the decoder reconstructs the audio amplitude and phase spectra in parallel, and the decoded waveform is obtained by inverse short-time Fourier transform. To ensure the fidelity of decoded audio like waveform codecs, spectral-level loss, quantization loss, and generative adversarial network (GAN) based loss are collectively employed for training the APCodec. To support low-latency streamable inference, we employ feed-forward layers and causal convolutional layers in APCodec, incorporating a knowledge distillation training strategy to enhance the quality of decoded audio. Experimental results confirm that our proposed APCodec can encode 48 kHz audio at bitrate of just 6 kbps, with no significant degradation in the quality of the decoded audio. At the same bitrate, our proposed APCodec also demonstrates superior decoded audio quality and faster generation speed compared to well-known codecs, such as SoundStream, Encodec, HiFi-Codec and AudioDec.Comment: Submitted to IEEE/ACM Transactions on Audio, Speech, and Language Processin

    Methods for speaking style conversion from normal speech to high vocal effort speech

    Get PDF
    This thesis deals with vocal-effort-focused speaking style conversion (SSC). Specifically, we studied two topics on conversion of normal speech to high vocal effort. The first topic involves the conversion of normal speech to shouted speech. We employed this conversion in a speaker recognition system with vocal effort mismatch between test and enrollment utterances (shouted speech vs. normal speech). The mismatch causes a degradation of the system's speaker identification performance. As solution, we proposed a SSC system that included a novel spectral mapping, used along a statistical mapping technique, to transform the mel-frequency spectral energies of normal speech enrollment utterances towards their counterparts in shouted speech. We evaluated the proposed solution by comparing speaker identification rates for a state-of-the-art i-vector-based speaker recognition system, with and without applying SSC to the enrollment utterances. Our results showed that applying the proposed SSC pre-processing to the enrollment data improves considerably the speaker identification rates. The second topic involves a normal-to-Lombard speech conversion. We proposed a vocoder-based parametric SSC system to perform the conversion. This system first extracts speech features using the vocoder. Next, a mapping technique, robust to data scarcity, maps the features. Finally, the vocoder synthesizes the mapped features into speech. We used two vocoders in the conversion system, for comparison: a glottal vocoder and the widely used STRAIGHT. We assessed the converted speech from the two vocoder cases with two subjective listening tests that measured similarity to Lombard speech and naturalness. The similarity subjective test showed that, for both vocoder cases, our proposed SSC system was able to convert normal speech to Lombard speech. The naturalness subjective test showed that the converted samples using the glottal vocoder were clearly more natural than those obtained with STRAIGHT

    Audio-Visual Speech Enhancement Based on Deep Learning

    Get PDF

    Suppression of acoustic noise in speech using spectral subtraction

    Get PDF
    technical reportA stand alone noise suppression algorithm is presented for reducing the spectral effects of acoustically added noise in speech. Effective performance of digital speech processors operating in practical environments may require suppression of noise from the digital waveform. Spectral subtraction offers a computationally efficient, processor independent, approach to effective digital speech analysis. The method, requiring about the same computation as high-speed convolution, suppresses stationary noise for speech by subtracting the spectral noise bias calculated during non-speech activity. Secondary procedures and then applied to attenuate the residual noise left after subtraction. Since the algorithm resynthesizes a speech waveform, it can be used as a preprocessor to narrow band voice communications systems, speech recognition systems or speaker authentication systems

    Spectrogram inversion and potential applications for hearing research

    Get PDF

    Cross-Lingual Neural Network Speech Synthesis Based on Multiple Embeddings

    Get PDF
    The paper presents a novel architecture and method for speech synthesis in multiple languages, in voices of multiple speakers and in multiple speaking styles, even in cases when speech from a particular speaker in the target language was not present in the training data. The method is based on the application of neural network embedding to combinations of speaker and style IDs, but also to phones in particular phonetic contexts, without any prior linguistic knowledge on their phonetic properties. This enables the network not only to efficiently capture similarities and differences between speakers and speaking styles, but to establish appropriate relationships between phones belonging to different languages, and ultimately to produce synthetic speech in the voice of a certain speaker in a language that he/she has never spoken. The validity of the proposed approach has been confirmed through experiments with models trained on speech corpora of American English and Mexican Spanish. It has also been shown that the proposed approach supports the use of neural vocoders, i.e. that they are able to produce synthesized speech of good quality even in languages that they were not trained on

    Multi-band excitation vocoder

    Get PDF
    Originally presented as author's thesis (Ph.D.--Massachusetts Institute of Technology), 1987.Bibliography: p. 126-131.Supported in part by the Advanced Research Projects Agency monitored by ONR under contract no. N00014-81-K-0742 Supported in part by the U.S. Air Force Office of Scientific Research under contract no. F19628-85-K-0028Daniel W. Griffin
    corecore