261 research outputs found

    Image Test Libraries for the on-line self-test of functional units in GPUs running CNNs

    Get PDF
    The widespread use of artificial intelligence (AI)-based systems has raised several concerns about their deployment in safety-critical systems. Industry standards, such as ISO26262 for automotive, require detecting hardware faults during the mission of the device. Similarly, new standards are being released concerning the functional safety of AI systems (e.g., ISO/IEC CD TR 5469). Hardware solutions have been proposed for the in-field testing of the hardware executing AI applications; however, when used in applications such as Convolutional Neural Networks (CNNs) in image processing tasks, their usage may increase the hardware cost and affect the application performances. In this paper, for the very first time, a methodology to develop high-quality test images, to be interleaved with the normal inference process of the CNN application is proposed. An Image Test Library (ITL) is developed targeting the on-line test of GPU functional units. The proposed approach does not require changing the actual CNN (thus incurring in costly memory loading operations) since it is able to exploit the actual CNN structure. Experimental results show that a 6-image ITL is able to achieve about 95\% of stuck-at test coverage on the floating-point multipliers in a GPU. The obtained ITL requires a very low test application time, as well as a very low memory space for storing the test images and the golden test responses

    Multi-Point Stride Coverage: A New Genre of Test Coverage Criteria

    Get PDF
    We introduce a family of coverage criteria, called Multi-Point Stride Coverage (MPSC). MPSC generalizes branch coverage to coverage of tuples of branches taken from the execution sequence of a program. We investigate its potential as a replacement for dataflow coverage, such as def-use coverage. We find that programs can be instrumented for MPSC easily, that the instrumentation usually incurs less overhead than that for def-use coverage, and that MPSC is comparable in usefulness to def-use in predicting test suite effectiveness. We also find that the space required to collect MPSC can be predicted from the number of branches in the program

    Deployment of Deep Neural Networks on Dedicated Hardware Accelerators

    Get PDF
    Deep Neural Networks (DNNs) have established themselves as powerful tools for a wide range of complex tasks, for example computer vision or natural language processing. DNNs are notoriously demanding on compute resources and as a result, dedicated hardware accelerators for all use cases are developed. Different accelerators provide solutions from hyper scaling cloud environments for the training of DNNs to inference devices in embedded systems. They implement intrinsics for complex operations directly in hardware. A common example are intrinsics for matrix multiplication. However, there exists a gap between the ecosystems of applications for deep learning practitioners and hardware accelerators. HowDNNs can efficiently utilize the specialized hardware intrinsics is still mainly defined by human hardware and software experts. Methods to automatically utilize hardware intrinsics in DNN operators are a subject of active research. Existing literature often works with transformationdriven approaches, which aim to establish a sequence of program rewrites and data-layout transformations such that the hardware intrinsic can be used to compute the operator. However, the complexity this of task has not yet been explored, especially for less frequently used operators like Capsule Routing. And not only the implementation of DNN operators with intrinsics is challenging, also their optimization on the target device is difficult. Hardware-in-the-loop tools are often used for this problem. They use latency measurements of implementations candidates to find the fastest one. However, specialized accelerators can have memory and programming limitations, so that not every arithmetically correct implementation is a valid program for the accelerator. These invalid implementations can lead to unnecessary long the optimization time. This work investigates the complexity of transformation-driven processes to automatically embed hardware intrinsics into DNN operators. It is explored with a custom, graph-based intermediate representation (IR). While operators like Fully Connected Layers can be handled with reasonable effort, increasing operator complexity or advanced data-layout transformation can lead to scaling issues. Building on these insights, this work proposes a novel method to embed hardware intrinsics into DNN operators. It is based on a dataflow analysis. The dataflow embedding method allows the exploration of how intrinsics and operators match without explicit transformations. From the results it can derive the data layout and program structure necessary to compute the operator with the intrinsic. A prototype implementation for a dedicated hardware accelerator demonstrates state-of-the art performance for a wide range of convolutions, while being agnostic to the data layout. For some operators in the benchmark, the presented method can also generate alternative implementation strategies to improve hardware utilization, resulting in a geo-mean speed-up of ×2.813 while reducing the memory footprint. Lastly, by curating the initial set of possible implementations for the hardware-in-the-loop optimization, the median timeto- solution is reduced by a factor of ×2.40. At the same time, the possibility to have prolonged searches due a bad initial set of implementations is reduced, improving the optimization’s robustness by ×2.35

    Improving Scientist Productivity, Architecture Portability, and Performance in ParFlow

    Get PDF
    Legacy scientific applications represent significant investments by universities, engineers, and researchers and contain valuable implementations of key scientific computations. Over time hardware architectures have changed. Adapting existing code to new architectures is time consuming, expensive, and increases code complexity. The increase in complexity negatively affects the scientific impact of the applications. There is an immediate need to reduce complexity. We propose using abstractions to manage and reduce code complexity, improving scientific impact of applications. This thesis presents a set of abstractions targeting boundary conditions in iterative solvers. Many scientific applications represent physical phenomena as a set of partial differential equations (PDEs). PDEs are structured around steady state and boundary condition equations, starting from initial conditions. The proposed abstractions separate architecture specific implementation details from the primary computation. We use ParFlow to demonstrate the effectiveness of the abstractions. ParFlow is a hydrologic and geoscience application that simulates surface and subsurface water flow. The abstractions have enabled ParFlow developers to successfully add new boundary conditions for the first time in 15 years, and have enabled an experimental OpenMP version of ParFlow that is transparent to computational scientists. This is achieved without requiring expensive rewrites of key computations or major codebase changes; improving developer productivity, enabling hardware portability, and allowing transparent performance optimizations

    Dynamic data flow testing

    Get PDF
    Data flow testing is a particular form of testing that identifies data flow relations as test objectives. Data flow testing has recently attracted new interest in the context of testing object oriented systems, since data flow information is well suited to capture relations among the object states, and can thus provide useful information for testing method interactions. Unfortunately, classic data flow testing, which is based on static analysis of the source code, fails to identify many important data flow relations due to the dynamic nature of object oriented systems. This thesis presents Dynamic Data Flow Testing, a technique which rethinks data flow testing to suit the testing of modern object oriented software. Dynamic Data Flow Testing stems from empirical evidence that we collect on the limits of classic data flow testing techniques. We investigate such limits by means of Dynamic Data Flow Analysis, a dynamic implementation of data flow analysis that computes sound data flow information on program traces. We compare data flow information collected with static analysis of the code with information observed dynamically on execution traces, and empirically observe that the data flow information computed with classic analysis of the source code misses a significant part of information that corresponds to relevant behaviors that shall be tested. In view of these results, we propose Dynamic Data Flow Testing. The technique promotes the synergies between dynamic analysis, static reasoning and test case generation for automatically extending a test suite with test cases that execute the complex state based interactions between objects. Dynamic Data Flow Testing computes precise data flow information of the program with Dynamic Data Flow Analysis, processes the dynamic information to infer new test objectives, which Dynamic Data Flow Testing uses to generate new test cases. The test cases generated by Dynamic Data Flow Testing exercise relevant behaviors that are otherwise missed by both the original test suite and test suites that satisfy classic data flow criteria

    An Empirical Study on Mutation, Statement and Branch Coverage Fault Revelation that Avoids the Unreliable Clean Program Assumption

    Get PDF
    Many studies suggest using coverage concepts, such as branch coverage, as the starting point of testing, while others as the most prominent test quality indicator. Yet the relationship between coverage and fault-revelation remains unknown, yielding uncertainty and controversy. Most previous studies rely on the Clean Program Assumption, that a test suite will obtain similar coverage for both faulty and fixed (‘clean’) program versions. This assumption may appear intuitive, especially for bugs that denote small semantic deviations. However, we present evidence that the Clean Program Assumption does not always hold, thereby raising a critical threat to the validity of previous results. We then conducted a study using a robust experimental methodology that avoids this threat to validity, from which our primary finding is that strong mutation testing has the highest fault revelation of four widely-used criteria. Our findings also revealed that fault revelation starts to increase significantly only once relatively high levels of coverage are attained

    Hardware Acceleration of Deep Convolutional Neural Networks on FPGA

    Get PDF
    abstract: The rapid improvement in computation capability has made deep convolutional neural networks (CNNs) a great success in recent years on many computer vision tasks with significantly improved accuracy. During the inference phase, many applications demand low latency processing of one image with strict power consumption requirement, which reduces the efficiency of GPU and other general-purpose platform, bringing opportunities for specific acceleration hardware, e.g. FPGA, by customizing the digital circuit specific for the deep learning algorithm inference. However, deploying CNNs on portable and embedded systems is still challenging due to large data volume, intensive computation, varying algorithm structures, and frequent memory accesses. This dissertation proposes a complete design methodology and framework to accelerate the inference process of various CNN algorithms on FPGA hardware with high performance, efficiency and flexibility. As convolution contributes most operations in CNNs, the convolution acceleration scheme significantly affects the efficiency and performance of a hardware CNN accelerator. Convolution involves multiply and accumulate (MAC) operations with four levels of loops. Without fully studying the convolution loop optimization before the hardware design phase, the resulting accelerator can hardly exploit the data reuse and manage data movement efficiently. This work overcomes these barriers by quantitatively analyzing and optimizing the design objectives (e.g. memory access) of the CNN accelerator based on multiple design variables. An efficient dataflow and hardware architecture of CNN acceleration are proposed to minimize the data communication while maximizing the resource utilization to achieve high performance. Although great performance and efficiency can be achieved by customizing the FPGA hardware for each CNN model, significant efforts and expertise are required leading to long development time, which makes it difficult to catch up with the rapid development of CNN algorithms. In this work, we present an RTL-level CNN compiler that automatically generates customized FPGA hardware for the inference tasks of various CNNs, in order to enable high-level fast prototyping of CNNs from software to FPGA and still keep the benefits of low-level hardware optimization. First, a general-purpose library of RTL modules is developed to model different operations at each layer. The integration and dataflow of physical modules are predefined in the top-level system template and reconfigured during compilation for a given CNN algorithm. The runtime control of layer-by-layer sequential computation is managed by the proposed execution schedule so that even highly irregular and complex network topology, e.g. GoogLeNet and ResNet, can be compiled. The proposed methodology is demonstrated with various CNN algorithms, e.g. NiN, VGG, GoogLeNet and ResNet, on two different standalone FPGAs achieving state-of-the art performance. Based on the optimized acceleration strategy, there are still a lot of design options, e.g. the degree and dimension of computation parallelism, the size of on-chip buffers, and the external memory bandwidth, which impact the utilization of computation resources and data communication efficiency, and finally affect the performance and energy consumption of the accelerator. The large design space of the accelerator makes it impractical to explore the optimal design choice during the real implementation phase. Therefore, a performance model is proposed in this work to quantitatively estimate the accelerator performance and resource utilization. By this means, the performance bottleneck and design bound can be identified and the optimal design option can be explored early in the design phase.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    From software to hardware: making dynamic multi-core processors practical

    Get PDF
    Heterogeneous processors such as Arm’s big.LITTLE have become popular as they offer a choice between performance and energy efficiency. However, the core configurations are fixed at design time which offers a limited amount of adaptation. Dynamic Multi-core Processors (DMPs) bridge the gap between homogeneous and fully reconfigurable systems. They present a new way of improving single-threaded performance by running a thread on groups of cores (compositions) and with the ability of changing the processor topology on the fly, they can better adapt themselves to any task at hand. However, these potential performance improvements are made difficult due to two main challenges: the difficulty of determining a processor configuration that leads to the optimal performance and knowing how to tackle hardware bottlenecks that may impede the performance of composition. This thesis first demonstrates that ahead-of-time thread and core partitioning used to improve the performance of multi-threaded programs can be automated. This is done by analysing static code features to generate a machine-learning model that determines a processor configuration that leads to good performance for an application. The machine learning model is able to predict a configuration that is within 16% of the performance of the best configuration from the search space. This is followed by studying how dynamically adapting the size of a composition at runtime can be used to reduce energy consumption whilst maintaining the same speedup as the fastest static core composition. An analysis of how much energy can be saved by adapting the size of the composition at runtime is conducted, showing that dynamic reconfiguration can reduce energy consumption by 42% on average. A model is then built using linear regression which analyses the features of basic blocks being executed to determine if the current composition should be reconfigured; on average it reduces energy consumption by 37%. Finally the hardware mechanisms that drive core composition are explored. A new fetching mechanism for core composition is proposed, where cores fetch code in a round-robin fashion. The use of value prediction is also motivated, as large core compositions are more susceptible to data-dependencies. This new hardware setup shows massive potential. By exploring a perfect value predictor with perfect branch prediction and the new fetching scheme, the performance of a large core composition can be improved by a factor of up to 3x, and 1.88x on average. Furthermore, this thesis shows that state-of-the-art value prediction with a normal branch predictor still leads to good performance improvements, with an average of 1.33x to up to 2.7x speedup
    • …
    corecore