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Abstract

Data flow testing is a particular form of testing that identifies data flow relations as
test objectives. Data flow testing has recently attracted new interest in the context of
testing object oriented systems, since data flow information is well suited to capture
relations among the object states, and can thus provide useful information for testing
method interactions. Unfortunately, classic data flow testing, which is based on static
analysis of the source code, fails to identify many important data flow relations due to
the dynamic nature of object oriented systems.

This thesis presents Dynamic Data Flow Testing, a technique which rethinks data
flow testing to suit the testing of modern object oriented software. Dynamic Data Flow
Testing stems from empirical evidence that we collect on the limits of classic data flow
testing techniques. We investigate such limits by means of Dynamic Data Flow Anal-
ysis, a dynamic implementation of data flow analysis that computes sound data flow
information on program traces. We compare data flow information collected with static
analysis of the code with information observed dynamically on execution traces, and
empirically observe that the data flow information computed with classic analysis of
the source code misses a significant part of information that corresponds to relevant
behaviors that shall be tested.

In view of these results, we propose Dynamic Data Flow Testing. The technique
promotes the synergies between dynamic analysis, static reasoning and test case gen-
eration for automatically extending a test suite with test cases that execute the complex
state based interactions between objects. Dynamic Data Flow Testing computes precise
data flow information of the program with Dynamic Data Flow Analysis, processes the
dynamic information to infer new test objectives, which Dynamic Data Flow Testing uses
to generate new test cases. The test cases generated by Dynamic Data Flow Testing ex-
ercise relevant behaviors that are otherwise missed by both the original test suite and
test suites that satisfy classic data flow criteria.
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Chapter 1

Introduction

Software testing is the prevalent activity for software quality assurance in most indus-
trial settings. It consists of executing the application with sample inputs and checking
the correctness of the outputs to investigate the presence of faults and verify the be-
havior of the application.

The effectiveness of software testing depends on the thoroughness of the test cases
executed on the application. Ideally, an application can be proven absolutely depend-
able through exhaustive testing, that is, executing and checking every possible behavior
of the software. However, since software encodes an enormous amount of behavior, ex-
haustive testing is not practical, and test engineers have to sample the input space of
the application to identify a finite set of test cases. The input space of an application
can be sampled in many (typically infinite) ways, and finding a reasonably small set
of test cases to execute all the important behaviors of the applications is a difficult
task [PY07, Ber07].

Testing techniques help testers select test cases that adequately sample the applica-
tion execution space by identifying a set of test objectives based either on the functional
or the structural elements of the application. Testers can then decide which test cases
add and which discard selecting only test cases that satisfy non yet executed test objec-
tives. They can stop testing when all the objectives are executed by the suite.

Functional approaches identify functionalities and usage scenarios of the module
under test as test objectives, approximating the thoroughness of the test suites as the
relative amount of exercised functionality. Structural testing approaches consider code
elements as test objectives, and measure the adequacy of a test suite as the amount of
code elements exercised by the test suite with respect to the total amount of elements
in the code.

Different structural approaches refer to different elements. Control flow criteria
identify test objectives from the control flow graph of the program. For example, the
statement adequacy criterion requires executing all program statements, and measures
the thoroughness of a test suite as fraction of executed statements, while branch cov-
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2 Introduction

erage focuses on the coverage of the outcomes of the decision points in the program.
Data flow testing criteria focus on data dependencies, and use the relations between
variable definitions and uses as test objectives, by for example requiring the execution
of all the pairs of definitions and uses of the same variable in the program.

One of the main reasons of success of structural testing approaches is that they can
be computed automatically on the source code of the application without relying on
other kinds of documents difficult to process and maintain such as software specifica-
tions. Control flow criteria have been largely studied and find wide use in industry, also
thanks to an extensive tool support. Furthermore, in recent times researchers have pro-
posed automated testing techniques to automatically generate test cases for satisfying
control flow elements, which can reduce the high cost of test case writing. However,
control flow criteria focus on the control relation between the code elements, ignor-
ing the data relation that becomes prominent when the software behavior depends on
the state-based relations between modules, as in the case of modern object-oriented
systems.

Data flow testing techniques seems better suited than control flow approaches for
testing object-oriented software, since object-oriented behavior is characterised by many
data dependencies. By using data relations as test objectives, data flow testing criteria
capture the state-based relations among objects which define and read the same class
variables. Data flow testing is also particularly promising for the definition of auto-
mated testing techniques for object-oriented software, since it identifies test cases that
suitably combine method calls that manipulate the objects state [HR94, SP03, DGP08,
VMGF13]. Data flow testing criteria have been widely studied, but there is still a lack
of evidence of their usefulness. Some empirical results confirm the usefulness of data
flow testing, while other work questions their ability to scale to complex industrial size
applications [Wey90, FW93, DGP08].

This thesis presents detailed results about the effectiveness of data flow approaches
in the presence of complex data flow relations that stem from the interactions between
objects; provides original results about the causes of the limited effectiveness of classic
data flow testing approaches, and proposes a new technique based on dynamic (data
flow) analysis to overcome the limitations of the current approaches.

Our research stems from the observation that classic data flow testing approaches do
not cope well with systems characterized by complex data flow relations that depend on
the dynamic behavior of the systems, due to the intrinsic limitations of the static analysis
that is employed to compute the target data flow abstractions. Data flow analysis of the
source code fails to scale to modern inter-procedural systems, whose behavior largely
depend on the dynamic allocation of objects. In particular, conservative implementa-
tions of data flow analysis both compute too many test objectives to be practical, and
include infeasible test objectives in the computation, i.e., infeasible paths from defini-
tions to uses of the same variable. Therefore, existing data flow testing techniques use
strong approximations in their analyses to scale to large complex systems, for example
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excluding inter-procedural data relations and aliasing [HR94, SP03, DGP08, VMGF13].

This thesis provides empirical evidence that excluding important characteristics of
programming languages, like inter procedural control flow and aliasing, leads to the
computation of a set of test objectives of limited effectiveness. We show that current
data flow testing approaches may miss a huge part of data flow information that is
relevant to testing, and provide evidence that the main problem of data flow testing is
not the presence of infeasible elements as commonly indicated in the literature, but the
imprecision of approximations used to improve the scalability of the techniques.

In this thesis, we re-think data flow testing and propose a new dynamic structural
testing approach that is both applicable to complex object-oriented applications and
more effective than the existing approaches. We design a new strategy to identify test
objectives that capture relevant state-based behavior of the application under test, and
we used this strategy to automatically generate effective test cases for object-oriented
system. Our technique, namely Dynamic Data Flow Testing, is built on top of a new
data flow analysis that we refer to as Dynamic Data Flow Analysis, which consists of
executing the program with one or more test cases and computing precise data flow
information on the execution traces. The collected information represents data flow
relations that derive from the interplay between the static structure of the program and
the dynamic evolution of the system, and thus cannot be identified with classic data flow
approaches. Dynamic Data Flow Testing infers new test objectives from this data flow
information collected dynamically, and automatically generates test cases that satisfy
them. These new test cases exercise complex state-based interactions of the application
and can detect subtle failures and that would go otherwise undetected.

1.1 Research Hypothesis

The research hypothesis of this thesis is that the data flow information computed by
means of a dynamic analysis can identify useful test objectives for guiding the genera-
tion of effective test cases for object-oriented systems.

We hypothesize that dynamically-computed data flow test objectives capture rele-
vant state based interactions between objects that are missed by state-of-the-art tech-
niques based on static analysis, and that the newly captured interactions are important
to test to expose corner-case failures that depend on object interactions. We also hy-
pothesize that the low applicability and effectiveness of existing data flow approaches
depends on the underlying static data flow analysis, and that we can obtain a more
effective data flow testing technique by exploiting dynamically computed data flow
information.
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1.2 Research Contributions

The main contribution of this thesis is the definition of Dynamic Data Flow Testing, a sys-
tematic testing technique that exploits dynamically computed data flow information to
select test cases that elicit the complex state-based behavior of object-oriented systems.

In particular, our work on Dynamic Data Flow Testing contributes to the state of the
research by:

• providing a precise quantitative analysis of the limits of the current data flow
testing approaches based on static data flow analysis which under-approximates
the dynamic behavior of software;

• defining Dynamic Data Flow Analysis, a dynamic implementation of data flow
analysis for object-oriented systems that computes precise data flow information
while executing a program;

• proposing Dynamic Data Flow Testing, a testing technique for systematically se-
lecting effective test cases for object-oriented systems leveraging dynamic data
flow information computed by Dynamic Data Flow Analysis. Dynamic Data Flow
Testing iteratively improves an existing test suite: At each iteration (A) dynami-
cally analyzes the program executed with the current test suite by means of Dy-
namic Data Flow Analysis to compute data flow information, (B) statically com-
bines the data flow information to identify new test objectives, and (C) either
selects or generates new test cases that satisfy the new objectives. The new test
cases are added to the current test suite for the new iteration.

• providing experimental data about the effectiveness of the proposed technique,
which confirm our research hypotheses.

1.3 Structure of the Dissertation

Chapters 2 and 3 focus on static data flow analysis and testing and on their limits.
Chapter 2 describes the fundamental concepts of data flow analysis and its application
to object-oriented systems. Chapter 3 introduces the classic data flow testing approach
and describes its limits.

Chapters 4 and 5 focus on Dynamic Data Flow Analysis and its evaluation. Chap-
ter 4 formalizes Dynamic Data Flow Analysis emphasising the differences with respect
to static data flow analysis, and Chapter 5 presents an experiment that compares dy-
namic and static data flow analysis, which motivate our idea of using dynamic data
flow analysis to select test objectives.

Chapters 6 and 7 present and evaluate Dynamic Data Flow Testing. Chapter 6 de-
scribes Dynamic Data Flow Testing in its three steps, the instantiation of Dynamic Data
Flow Analysis, the inference of test objectives from the dynamically collected data flow
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information and the selection of test cases to augment an existing test suite. Chapter 7
describes the prototype implementation of Dynamic Data Flow Testing and reports about
the evaluation studies we conducted.

Chapter 8 surveys the related work on automated systematic testing techniques
and test case generation approaches based on the software structure. Finally, Chap-
ter 9 summarizes the results of the dissertation and outlines conclusions and future
directions.

Part of the work on Dynamic Data Flow Analysis described in Chapters 4 and 5 ap-
peared in the proceedings of the 7th IEEE International Conference on Software Testing,
Verification and Validation (ICST) in 2014 [DPV14], while part of the work on Dynamic
Data Flow Testing described in Chapters 6 and 7 appeared in the proceedings of the 37th
International Conference on Software Engineering (ICSE) in 2015 [DMPV15].
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Chapter 2

Data Flow Analysis

Data flow techniques analyze how data are propagated in a program, em-
phasizing how information is generated, flows and is used from a program
point to another. Data flow analysis is applied in many domains ranging from
compiler optimization, to security analysis and software testing. This chap-
ter describes the terminology and fundamental concepts of data flow analysis,
focusing on its application to object-oriented systems.

Data flow analysis refers to a body of software analysis techniques that compute how
data propagate in a software application, emphasizing how information is generated,
flows and is used from a program point to another. Data flow analysis constitutes the
core of data flow testing approaches, where is used to identify test objectives.

This chapter introduces the fundamental concepts of data flow analysis. Section 2.1
introduces data flow analysis concepts and terminology: definitions, uses, definition
use pairs and reaching analysis. Section 2.2 presents data flow analysis and abstractions
for object-oriented systems. Section 2.3 discusses the limits of static data flow analyses
in dealing with some programming languages characteristics.

2.1 Intra- and Inter-Procedural Data Flow Analysis

Data flow abstractions make it explicit how values are defined and used in a pro-
gram, and how program points that define and use the same variables depends on
each other. The fundamental data flow abstractions are definitions, uses and definition
use pairs [ASU86].

A definition of a variable occurs when a value is assigned to the variable, and a use
occurs when the value stored in the variable is read. For example, in Listing 2.1 the
assignment at line 2 is a definition of the variable fact, and the return statement at
line 6 is a use of the same variable fact. The same variable may be defined and used in
the same statement, for instance, the increment operators i++ at line 3 both uses and
defines the variable i.

7



8 Data Flow Analysis

Listing 2.1. Code example
1 int n = read();
2 int fact = 1;
3 for (int i = 1; i <= n; i++) {
4 fact *= i;
5 }
6 return fact;

Definition use pairs capture the data dependencies between program points that
define a value, and program points where that value may be accessed. They associate
definitions with uses of the same variables when there is at least one program execution
in which the value produced by the definition may be read by the use without being
overwritten.

Definition use pairs can be defined in terms of paths of the control flow graph of the
application. A definition use pair of a variable v is a pair (d, u) where d is a program
point that contains a definition of v, u a program point that contains a use on v, and
there exist at least one control flow path between d and u with no intervening definition
of v. In this case we say that d reaches u, and that there is a definition-clear path
between d and u. On the contrary, if a definition d 0 of a variable v overwrites a previous
definition d of the same variable, then the former definition is killed by the latter on
that path.

For instance, in Listing 2.1 the definition and use of the variable fact that occur
at lines 2 and 4 form a definition use pairs. When the variable n is greater than 1, the
definition of fact at line 4 kills the definition of fact at line 2. But since n could be less
than 1, the definition of fact at line 2 reaches also its use at line 6, forming another
definition use pair. Table 2.1 reports all the definition use pairs of the example.

The definition use pairs of a given program could be computed by analyzing the
propagation of each individual definition along all the paths of the control flow graph
of the program. This approach requires many traversals of the graph and is in general
inefficient [ASU86].

Data flow analysis provides a more efficient algorithm for computing definition use
pairs, which does not require to traverse every individual path, but summarizes data
flow information at a program point over all the paths reaching that program point.
In particular, the analysis that enables the computation of definition use pairs is called
reaching definition analysis, and computes for each program point the set of definitions
that may reach that program point.

Reaching definitions analysis defines a fixed point algorithm that exploits the way
reaching definitions at a node are related to reaching definitions at an adjacent node
to compute data flow information efficiently. Reaching definitions that reach the be-
ginning of a node n can be evaluated as the union of all the definitions that reach the
exit points of the predecessors of n. The reaching definitions that reach the exit of the
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Table 2.1. Definition use pairs found in the code snippet in Listing 2.1

Variable Name
Definition Use

Code Line Code Line

n int n = read(); 1 i <= n; 3
fact int fact = 1; 2 fact *= i; 4
fact int fact = 1; 2 return fact; 6
fact fact *= i; 4 fact *= i; 4
fact fact *= i; 4 return fact; 6

i for (int i = 1; 3 i <= n; 3
i for (int i = 1; 3 fact *= i; 4
i for (int i = 1; 3 i++) 3
i i++) 3 i <= n; 3
i i++) 3 fact *= i; 4
i i++) 3 i++) 3

node n instead are evaluated as the difference between the definitions that reach the
entry points of n and the definitions killed in n, plus the new definitions generated in
n itself.

Formally, the algorithm works on four sets of information about each node of the
control flow graph: GEN , KI LL, ReachOut and ReachIn. GEN and KI LL denote
the sets of definitions that start and stop propagating in a node, they are computed
simply inspecting the definitions of each node, and are passed as input to the algo-
rithm. ReachOut and ReachIn denote the set of prior and next reaching definitions,
respectively, and are produced by the algorithm, which computes them by repetitively
applying the data flow Equations 2.1 and 2.2 on the graph until the result stabilizes.

ReachIn[n] =
[

p2pred(n)
ReachOut[p] (2.1)

ReachOut[n] = ReachIn[n] \ KI LL[n][ GEN[n] (2.2)

Figure 2.1 shows an example of the results of reaching definitions analysis per-
formed over the program reported in listings 2.1. For each node of the control flow
graph, the figure reports the initial sets GEN and KILL, and the sets ReachIn and Rea-
chOut computed by the algorithm.

Once reaching definition information is computed, it is possible to evaluate defi-
nition use pairs by examining each node of the control flow graph and matching the
definition that reach the node entry with the uses present in the node.
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1  int n = read();
2  int fact = 1;

3  for (int i = 1;

3  i <= n;

4  fact *= i;

3  i++;

6  return fact;

GEN={a:n; a:fact} KILL={} 
ReachIn={} ReachOut={a:n; a:fact}

GEN={b:i} KILL={} 
ReachIn={a:n; a:fact} ReachOut={a:n; a:fact; b:i}

GEN={} KILL={} 
ReachIn={a:n; a:fact; d:fact; b:i; e:i} ReachOut={a:n; a:fact; d:fact; b:i; e:i}

GEN={d:fact} KILL={a:fact; d:fact;} 
ReachIn={a:n; a:fact; d:fact; b:i; e:i} ReachOut={a:n; d:fact; b:i; e:i}

GEN={e:i} KILL={b:i} 
ReachIn={a:n; d:fact; b:i; e:i} ReachOut={a:n; d:fact; e:i}

a

b

c

d

e

f
GEN={} KILL={} 
ReachIn={a:n; a:fact; d:fact; b:i; e:i} ReachOut={a:n; a:fact; d:fact; b:i; e:i}

Figure 2.1. CFG of the code snippet in Listing 2.1 annotated with information on
reaching definitions.

2.2 Data Flow Analysis of Object-Oriented Systems

The structure of object-oriented programs differs from that of the procedural programs
originally targeted by data flow analysis techniques. The behavior of procedural pro-
grams mostly depends on procedures with a complex control flow. On the contrary, the
distinctive characteristics of the object-oriented paradigm are classes and objects, and
the behavior of object-oriented software depends on how objects interact with each
other through their methods and variables.

This section describes how data flow abstractions and analysis can be extended
to model the data relations between objects. Firstly, data flow analysis has to be ex-
tended to propagate definitions over the inter-procedural control flow that arises from
the method interactions within and between classes. We discuss this in Section 2.2.1.

Secondly, object-oriented design principles encourage the encapsulation of object
states: objects can refer to other objects as part of their state leading to nested state-
based relationships between them. Section 2.2.2 describes how we can model the data
dependencies that arises from object encapsulation by extending definition use pairs
with the information of the invocation context.

2.2.1 Intra Class Data Flow Analysis

Data flow relations in a class occur both within and across methods that share infor-
mation either passing values as parameters or operating on the same shared variables
(class fields) [HR94].

Definition use pairs can involve local variables defined and read within a method
(intra-method pairs). For example, in the code snippet in Listing 2.2 that includes a
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Listing 2.2. CoffeeMachine Class Example

1 class CoffeeMachine{
2 Inventory i = new Inventory();
3 int price, amtPaid;
4
5 public void makeCoffee(boolean sugar){
6 boolean canMakeCoffee=true;
7 if(amtPaid<price || i.getCoffee()<=0
8 || i.getSugar()<=0)
9 canMakeCoffee=false;

10 if(canMakeCoffee){
11 Coffee c = new Coffee();
12 if(sugar)
13 addSugar(c);
14 amtPaid-=price;
15 i.consumeCoffee();
16 }
17 }
18
19 public void makeTea(boolean sugar){
20 boolean canMakeTea=true;
21 if(amtPaid<price || i.getTea()<=0
22 || i.getSugar()<=0)
23 canMakeTea=false;
24 if(canMakeTea){
25 Tea c = new Tea();
26 if(sugar)
27 addSugar(c);
28 amtPaid-=price;
29 i.consumeTea();
30 }
31 }

32
33
34 private void addSugar(Coffee c){
35 c.addSugar();
36 i.consumeSugar();
37 }
38
39 public void addCoins(int amt){
40 amtPaid+=amt;
41 }
42
43 public void addInventory(int coffee,
44 int sugar){
45 i.setSugar(sugar);
46 i.setCoffee(coffee);
47 }
48 }
49
50 class Inventory{
51 int sugar;
52 int coffee;
53 int tea;
54 public void setSugar(int s){
55 sugar=s;
56 }
57 public void consumeSugar(){
58 sugar--;
59 }
60 ...
61 }

simple Java program that models the behavior of a coffee machine, the definition and
use of the variable canMakeCoffee at lines 6 and 10 form an intra-method definition
use pair. Intra-method pairs can be detected on the control flow graph of a method
applying the classic data flow analysis introduced in the previous section.

Definition use pairs arise also from the inter-procedural control flow of different
methods that directly call each other, or that define and use a class field. We define an
inter-method pair as a pair whose definition and use occur in two different methods that
call each other, and that share the defined and used variable as parameter, for example
the definition and use of variable c at lines 11 and 35 in Listing 2.2. We define an intra-
class pair as a pair whose definition and use occur in two different public methods that
define and use the same class field [HR94]. For example, the definition and use of the
class field CoffeeMachine.amtPaid at lines 40 and 7 in Listing 2.2.

Inter-method and intra-class pairs can be computed with an inter-procedural ex-
tension of data flow analysis, addressing the inter-procedural control flow between
the methods of one or multiple classes. Inter-procedural data flow analysis works by
propagating data flow equation over an inter-procedural control flow graph called class
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boolean canMakeCoffee=true;

if(amtPaid<price && i.getC…

canMakeCoffee=false;

    if(canMakeCoffee){

Coffee c = new Coffee();

if(sugar)

c.addSugar();

i.consumeSugar();

addSugar(c);

amtPaid-=price;

boolean canMakeTea=true;

if(amtPaid<price && i.getC…

canMakeTea=false;

main

    if(canMakeTea){

Tea c = new Tea();

if(sugar)

addSugar(c);

amtPaid-=price;

makeCoffee(boolean sugar)

addSugar(Coffee c)

makeTea(boolean sugar)

Figure 2.2. Extract of the CCFG of the class CoffeeMachine of Listing 2.2, that focus
on the interaction between the methods makeCoffee, makeTea and addSugar.

control flow graph (CCFG). The class control flow graph connects control flow graphs
of individual methods by adding special edges from nodes that correspond to method
invocations to the entry nodes of the called method, and from the exit nodes to nodes
that correspond to return from the invocation. A special entry node is used to represent
the entry of an hypothetical “main” method that can call each method sequence in any
arbitrary order [PY07, HR94]. An example of CCFG is reported in Figure 2.2, showing
the CGFG of the methods CoffeeMachine.makeCoffee(), CoffeeMachine.makeTea()
and CoffeeMachine.addSugar() of Listing 2.2.

CGFGs as defined above do not take into account the context of the different calls.
Thus, a CGFG may contain paths that do not match the program call-return semantics,
that is, paths in which a call does not match the return. Propagating data flow equations
on these paths could produce spurious information.

For example in the graph in Figure 2.2, we highlighted in bold a spurious path that
connects the node addSugar(c) of method CoffeeMachine.makeCoffee() to the node
amtPaid-=price of method CoffeeMachine.makeTea(), passing through method
CoffeeMachine.addSugar(). This path does not match the call-return semantics be-
tween the methods, since at runtime the method CoffeeMachine.addSugar(),
when called from CoffeeMachine.makeCoffee(), will never return to the method
CoffeeMaker.makeTea().

An inter-procedural data flow analysis that propagates data flow equations ignoring
the context of the method calls is referred to as context-insensitive, because it does not
distinguish the calling context of a called procedure when jumping back to the original
call site [ASU86]. Context-insensitive analysis propagates data flow equations also on
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the spurious paths of the CCFG, potentially identifying invalid information. However,
can be implemented efficiently, and allows the analysis to scale on large programs.
On the contrary, a context-sensitive inter-procedural data flow analysis considers the
calling context when analyzing the target of a function call, and correctly jumps back
to the original call site of a called procedure. Context-sensitive analysis is more pre-
cise than context-insensitive one, however, the number of contexts can be exponential
the number of procedures in the program. Although efficient algorithms exploits sum-
maries to store information for each procedure and lazily re-analyze the context only
if it has not been analyzed before in that specific context, context-sensitive analyses
can be costly to apply on large complex systems; and many works that employed a
data flow analysis relied on a context insensitive implementation that provides a better
scalability [HR94, SP03, DGP08, VMGF13].

2.2.2 Inter Class Data Flow Analysis

In object-oriented programming, the class state is an assignment of the attributes (the
fields) declared in a class, in the context of some objects that instantiate the class. A
class state is structured if the class includes at least an attribute with a non-primitive
value, that is, an attribute defined as a data structure, possibly declared with reference
to the type of other classes. For example, the state of the class CoffeeMachine in
Listing 2.2 includes an object of type Inventory (the field CoffeeMaker.i), which
contains the three primitive fields Inventory.sugar, Inventory.coffee and Inven-

tory.tea. At runtime, the state of an object CoffeeMachine depends on the internal
state of the object Inventory referenced by CoffeeMachine.i, that is, on the values of
the variables Inventory.sugar, Inventory.coffee and Inventory.tea. A definition
or an use of these variables will affect not only the object Inventory, but also the
(nested) state of the object CoffeeMachine.

To better express the nested-state relationships between classes, we can represent
the class state as a set of class state variables, each corresponding to an assignable (possi-
bly nested) attribute that comprises the state of the class under test. State variables are
identified by the class they belong to and the chain of field signatures that characterize
the attribute. In the example just discussed, the class state variables of CoffeeMachine
are CoffeeMachine.i.sugar, CoffeeMachine.i.coffee and CoffeeMachine.i.tea.

We can model data dependencies that arise from the nested state of classes extend-
ing definitions and uses with the information on the context of the method invocations,
where the context of methods invocation is the chain of (possibly nested) method in-
vocations that, from the class, leads to the definition or the use of the class state vari-
able [SP03, DGP08]. We formally define class state variables and contextual definitions,
uses and definition use pairs in Definitions 2.1, 2.2 and 2.3. These definitions extend the
original definitions proposed by Souter and Pollock and Denaro et al. [SP03, DGP08].
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Definition 2.1 (Class State Variables). A class state variable is a pair hclass_id, f ield-
_chaini, where class_id is a class identifier and f ield_chain is a chain of field signa-
tures that navigates the data structure of the class up to an attribute declared therein.

Definition 2.2 (Contextual definition (use)). A contextual definition (use) cd (cu) of
a class c is a tuple (var, hm1, m2, ..., mni, l) where var is the defined (used) class state
variable of c, l is the location of the actual store (load) instruction that modifies (ref-
erences) the nested state of c, and hm1, m2, ..., mni is a call sequence where m1 is the
call site of the first method call leading to a modification (reference) of the state of c,
and mn is the method containing l.

Definition 2.3 (Contextual definition use pairs). A contextual definition use association
for a class state variable var is a pair (cd, cu) that associates a contextual definition cd
of var, with a contextual use cu of var, which have at least one def-clear paths between
them.

For example, just consider the following contextual definition use pair of the class
state variable CoffeeMachine.i.sugar computed over the two classes CoffeeMachine
and Inventory of Listing 2.2:

Context Line

Definition CoffeeMachine::addInventory(int, int) [45]! Inventory::setSugar(int) 55
Use CoffeeMachine::addSugar(Coffee) [36]! Inventory::consumeSugar() 58

Where ! indicates method calls and the numbers surrounded by square brackets
are the lines where the calls occur.

The invocation of the method i.setSugar(int) in the method addInventory(int,

int) at line 45 leads to a definition of the variable sugar of i. Similarly, the invo-
cation of i.consumeSugar() in the method addSugar(Coffee) at line 36 leads to a
use event over the variable sugar of i. This definition use pair captures the data de-
pendencies between the methods addInventory(int, int) and addSugar(Coffee)

that define and read the internal state of the class CoffeeMachine, that is the variable
CoffeeMachine.i.sugar.

Contextual data flow information is computed with an inter-procedural data flow
analysis that propagate data flow equations over multi-class extension of the class con-
trol flow graph, which models the control flow between methods of different
classes [SP03, DGP08]. The construction of the inter-procedural graph on object-
oriented systems, which extensively use virtual call invocations instead of static ones
(caused by polymorphism and in general dynamic binding), presents well-known chal-
lenges and impact on the applicability and on the precision of the analysis. We discuss
the problems that arise from the presence of dynamic binding in the next section.
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2.3 Dealing with Dynamic Features

Static program analysis techniques such as data flow analysis have precision problems
when applied over programs which behavior cannot be statically known without exe-
cuting the application.

Some programming language features, such as pointers and dynamic binding, de-
fine software behavior that depends on the runtime status of the program. This dy-
namic behavior of software cannot be encoded precisely by statically analyzing the
source code, but can be deduced only observing the program execution. In these cases,
static analyses have to abstract this dynamic behavior into decidable over- or under-
approximations on which it is possible to reason statically [ASU86].

An analysis over-approximates the dynamic behavior of software when it conserva-
tively includes all the (statically detectable) possible behavior in the application model.
For example, analyses that over-approximate the application execution model consid-
ers as executable all the statically computed paths in a control flow graph, even if not
all the paths in a CFG represents possible executions.

Analyses that under-approximates the dynamic behavior of software model the ap-
plication abstracting out behavior. For example, an analysis could overlook the presence
of reference aliases to reduce the size and the complexity of the model.

Both under- and over-approximations impact on the precision and the cost of the
analysis. In particular, the approximations impact differently on the soundness and
completeness of a data flow analysis, which we define below:

Soundness (Data Flow Analysis): A sound data flow analysis is an analysis that identi-
fies only executable data flow abstractions, for instance, only definition use pairs
that can be observe at runtime when executing the program. A sound data flow
analysis may fail to detect some data flow abstractions.

Completeness (Data Flow Analysis): A complete data flow analysis is an analysis that
identifies all the executable data flow abstractions without missing any. A com-
plete data flow analysis may include non executable data flow abstractions in the
results.

Analyses that over-approximate the dynamic behavior of software usually detect all
data flow relations, but they may include non observable behavior in the application
model, thus introducing unsoundness in the results. Over-approximations may also
negatively affect the scalability of the analysis, because considering all the statically
detectable behavior of systems with a complex structure can exponentially increase the
analysis cost.

Under-approximations may negatively affect both the soundness and the complete-
ness of the analysis, since abstracting the behavior of the application may produce both
incomplete and unsound information. Under-approximations reduce the complexity of
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the analysis, thus improving scalability and performance, and can therefore be cost-
effective when applied in contexts where a certain degree of imprecision is tolerated.

Choosing the appropriate approximations to deal with the dynamic behavior of
software is one of the main challenges when designing a static data flow analysis. Too
strong approximations make the analysis too imprecise to be useful. On the other hand,
handling some complex language features without under-approximations would make
the analysis unscalable to the point of being useless.

Below we describe the main characteristics of programming languages that are ap-
proximated in static data flow analyses, focusing on the common over- and under-
approximations that are implemented in existing approaches in literature, and on the
impact that these approximations have on the soundness and completeness of the anal-
ysis.

2.3.1 Arrays

Array elements are accessed through indexes which values are either statically declared
or evaluated at runtime. In this latter case, a static analysis cannot determine wether
two indexes are always, never or sometime equal without executing the program, in-
troducing imprecision in the results. For example, in the code snippet in Listing 2.3 the
indexes i and j depend on the runtime of the application. They may point to the same
value (triggering a definition use pair on the value referenced by the array at line 1 and
2), or never be equal in any execution.

Listing 2.3. Example of arrays
1 a[i] = 0;
2 x = a[j];
3 a[5] = 5;

To limit the uncertainty introduced in the results, static data flow analysis treats
arrays in different ways trading off conservativeness for scalability and soundness.

The most conservative strategy distinguishes single definitions and uses of each cell
of the array. When the index is not statically known, like i and j in the example of
Listing 2.3, the definition or access of a cell is considered a possible definition or access
of any cell, over-approximating the possible behavior of the application. This is an
example of complete but unsound analysis. The analysis conservatively includes all the
feasible data flow abstractions of arrays elements, but it will also include a likely high
number of infeasible abstractions. Intuitively, a single array with many elements could
generate an exponential number of infeasible data flow relations, leading to scalability
problems and weakening the usefulness of the result of the analysis.

A less conservative approach abstracts arrays as single entities that are defined every
time any cell is modified, and used every time any cell is read. This abstraction makes
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the results of a data flow analysis both unsound and incomplete. For example, the
assignment at lines 3 in Listing 2.3 will always kill the definition at line 1, even if
at runtime the write events could occur on different memory locations. Even if this
approach introduces a strong under-approximation, it is scalable and often considered
a fair trade off when the analysis is used in the context of testing.

Finally, arrays could also be overlooked by the analysis. In this case the only def-
inition use pairs identified over arrays are between the creation of the array itself (a
definition of the array reference) and any access to the array for both writing or reading
a cell (an use of the array reference). This approach result in a (very) unsound and
incomplete analysis.

2.3.2 Pointers

There is an alias relation whenever a memory location is referred using different names.
This particular behavior, which depends from programming languages constructs such
as pointers and object references, has a strong impact on the soundness of a data flow
analysis.

Data flow analysis distinguishes definitions and uses in the source code identifying
them according to their variable name, that is, it assumes that two accesses refer to the
same memory location only when they occur though the same variable. In the presence
of aliases, however, this assumption does not hold, and data flow events detected on
different variables could in reality interest the same storage location.

Listing 2.4. Example of pointers
1 int i = 0;
2 int *intptr = &i;
3 *intptr = 10;
4 printf("\%d\n", i);

For example, the code snippet in Listing 2.4 illustrates a very simple case of aliasing
due to pointers: the pointer *intptr (line 2) is an alias of variable i. Variable i is
initially assigned to 0, and its value is later set to 10 through the pointer (line 3). A
static data flow analysis is not able to decide whether two different variables point to
the same memory location, and thus can share a data flow relation, or not. For instance,
a data flow analysis might miss the fact that, in Listing 2.4, the definition through the
pointer *intptr at line 3 kills the definition of i at line 1.

Another example are arrays of pointers that refer to the same element in multiple
cell locations, for instance, given an array a we have an alias when we store the same
element e in the cell a[1] and a[2].
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To identify aliases and increase the soundness of the results, data flow analysis can
be complemented with an alias analysis, that is, a static analysis that resolves the alias
relations of a program.

Alias analyses compute either may or must alias information. May alias information
report a possible alias relation between two or more pointers during program execution.
A may alias analysis (or point-to analysis) conservatively computes a superset of all
possible aliases over-approximating the heap locations that each program pointer may
point to. Doing so, a may alias analysis produces complete information, but introduces
unsoundness in the form of aliases that may be impossible to actually observe executing
the program.

Must alias analysis identifies a necessary (must) alias relation between two or more
pointers at some point during the program execution. A must alias analysis produces
sound but potentially incomplete results, since it may be not powerful enough to iden-
tifying all the must aliases that exist at runtime, but statically computes only a subset
of must aliases.

There are many may and must alias analyses, ranging from relatively simple ab-
stractions to very complex techniques [LH99]. Most scalable alias analyses are flow
insensitive, they assume that the statements can execute in any order and any num-
ber of time. Flow insensitive alias analyses are computationally efficient, at the cost
of being imprecise. More precise but computationally expensive analyses are flow and
context sensitive analyses that consider the correct execution order of both statements
and procedures.

Surveying alias analyses is beyond the scope of this thesis, however it is important
to note that also in the context of alias analyses a tradeoff between precision, scalability
and usefulness of the analysis is present. Flow and context sensitive analyses may not
scale to industrial-size program, while scalable approaches may be approximated to the
point of being of limited usefulness.

When we complement a data flow analysis with an alias analysis, the completeness,
soundness and scalability of the analysis depends on the completeness and soundness
of the used alias information, and on the cost of the alias analysis. Incorporating may
alias information in data flow analysis increases the completeness of the analysis, and
can be computed using a flow insensitive analysis with a limited impact on the cost
and scalability of the analysis. However, may alias analyses, especially flow insensitive
ones, compute infeasible alias relations that may lead to an explosion of the number of
infeasible data flow abstractions, reducing the soundness of the data flow information
and its usefulness, for example, for testing.

Must alias information can increase the soundness of a data flow analysis, since it
includes only feasible alias relations that increase the precision of the results. Must
alias information can avoid computing infeasible data flow relations that depends on
the propagation of definitions that at runtime are always killed using an alias, like the
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infeasible pair between line 1 and line 4 in Listing 2.4. However, must alias analyses
typically require flow and context sensibility, thus can introduce a significant overhead
on the data flow analysis, and limit its scalability.

Incorporating only must alias information in data flow analysis could increase the
analysis soundness avoiding an explosion of infeasible elements. However such analysis
may be incomplete to a large extent, and it may miss a large number of feasible data
flow abstractions that depend on may aliases. Whether this under-approximation could
be considered acceptable depends on which use the analysis is intended for.

Despite the large amount of research, and the pervasiveness of aliases in most pro-
gramming languages, most of the approaches that rely on data flow analysis do not
include alias analysis [HFGO94, FWH97, OPTZ96, FWH97, DGP08, HA13, VMGF13].
Overlooking aliases while performing data flow analysis can have a huge impact on the
soundness and completeness of the analysis, and can directly affect the effectiveness of
a technique that relies over data flow information.

2.3.3 Paths

Data flow analysis typically over-approximates the behavior of the application by as-
suming that every conditional can always evaluate as both true and false, introducing
a degree of unsoundness in the results. For example, it may be the case that a program
path identified on a control flow graph traverses some conditionals that at runtime al-
ways evaluate as false, for instance in the case of defensive programming. In this case,
the identified path is spurious, or infeasible, it is statically identified but impossible to
be executed at runtime by any input to the program.

Including spurious paths in the analysis may lead to computing infeasible data flow
abstractions, which make the analysis unsound [Wey90, FW93]. For instance, if a reach-
ing definitions analysis propagates values over infeasible paths, it may compute an in-
feasible definition use pair that identifies as data dependent two program points that at
runtime share no dependency.

Consider again, for example, the code snippet in Listing 2.1, and its CFG reported
in Figure 2.1. Assume that the function read() always returns a number greater than
0, therefore the program will always enter the for loop and will define fact at line 4
that kills the defintion of fact at line 2. In this case, the path that traverses the nodes
a, b, c and f is infeasible, as it is infeasible the definition use pair between the definition
and the use of fact at line 2 and 6.

Although, in general, the problem of deciding whether a path is feasible or not
is undecidable, some techniques can detect subsets of infeasible paths. These tech-
niques are based either on symbolic execution, model checking or on pattern match-
ing [DBG10, BHMR07, NT07, NT08]. Techniques based on symbolic execution and
model checking submit path conditions to theorem provers to verify the satisfiability
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of the path. Techniques based on pattern matching analyse the source code for com-
mon programming patterns that lead to infeasible paths. These techniques are however
particularly expensive to apply and to integrate in a data flow analysis.

The state of practice in data flow analysis is to tolerate the unsoundness that de-
pends on the presence of infeasible paths. Some attempts have been done to integrate
techniques for infeasible path detection and data flow analysis, but the applicability of
these techniques is strongly limited by the cost of the analysis [SFP+15].

The infeasibility problem has important implications when using data flow analysis
for testing, since infeasible definition use pairs identify test objectives that are impos-
sible to execute and may divert the testing effort, as discussed in detail in Section 3.3.

2.3.4 Dynamic Binding

Dynamic binding is a programming mechanism that allows to select which implemen-
tation of a polymorphic operation to call at runtime, differently from static binding that
fixes all types of variables and expressions in the compilation phase.

Dynamic binding is a characteristic feature of object-oriented software: the object-
oriented paradigm encourages declaring variables and parameters using superclasses
and interfaces, and invoking on them methods that are overridden in their subclasses,
which concrete type is determined at runtime. Advanced programming languages fea-
tures such as virtual method invocations and reflection, which allows the developer
to perform runtime actions given the descriptions of the objects involved, and which
are implemented in popular object-oriented languages like Java, also define dynamic
binding relationship between calling objects that are undecidable to resolve statically.

Software systems written exploiting programming languages features for dynamic
binding have, therefore, an inter-procedural control flow which largely depends on the
dynamic behavior of the application. In this case, the source code does not contain
enough information for statically resolving the binding relations between call points
and called elements, and for statically identifying which parameters and variables are
passed between procedures. As a result, the precise static construction of the inter-
procedural control flow graphs is generally undecidable, affecting the soundness of a
static analysis based on that inter-procedural control flow graph.

The problem of statically resolving calls to procedures or methods that depends on
dynamic binding translates to an aliasing problem: we have to identify to which mem-
ory locations some variables and references could point to. It requires an alias analysis
to over- or under- approximate the possible states of the application, and then construct-
ing the inter-procedural control flow graph according to the chosen approximation.

It is important to note that dynamic binding is pervasive in many applications, and
combined with other forms of aliasing causes an explosion of the complexity of an
inter-procedural analysis.
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Pairing data flow analysis with alias analysis is necessary to produce a sound repre-
sentation of the inter-procedural control flow of software, but implementing the correct
level of approximation for balancing soundness and scalability is particularly challeng-
ing when dynamic binding is pervasive in the application, and with no perfect solu-
tion [Ryd03]. Over-approximations can lead to the identification of an exponential
number of infeasible paths on the inter-procedural control flow graph, while under-
approximations may lead to missing significative parts of the application behavior.

In the following we illustrate the problems involved with the static representation
of the inter-procedural control flow in the presence of dynamic binding with the Java
example of Listing 2.5.

We use the example to illustrate an inter-procedural reaching definition analysis
when the expected results depend on the possible dynamic bindings of some method
calls and on the occurrence of aliases between program variables and objects in mem-
ory.

In the Java program of Listing 2.5, the field nest.i is defined by invocations of the
methods of the classes Nest (lines 27 and 28) and NestA (line 32). These definitions
propagate intra-procedurally to the end of the respective methods. We denoted these
definitions as D0, D1 and D2, respectively. In Listing 2.5, we have annotated the exit of
the methods with a comment that indicates the definitions propagated in each method,
that is, the definitions that are possibly executed within the execution flow of that
method and not yet overridden by any subsequent assignment until the exit of that
method. For example, executing method Nest.n() and NestA.n() would propagate D1
or D2, respectively, while executing method NestB.n() would propagate the definition
D0 that is active at that point because of the execution of the constructor of class Nest.

The definitions D0, D1 and D2 also propagate to the methods m1..m3 through the
calls to the methods n. In these cases, the propagation of the definitions depends on the
dynamic binding of the method calls. For example, the call to the method n in method
m1 at line 7 can be dynamically bound to any of the methods of the classes Nest, NestA
or NestB, and can thus result in the execution of the definitions at lines 27, 28 or 32,
and all the three definitions can propagate to the exit point of method m1. Similarly,
the calls to the method n in the methods m2..m3 can be dynamically bound to different
sets of methods in Nest, NestA or NestB, and can thus propagate different definitions
to the exit of the methods, discussed in details in the examples below.

The methods m1, m2 and m3 exemplify the different aspects of the impact of the
dynamic binding of method calls on static analysis.

Method m1 may call nest.n() at line 7 that, depending on the runtime type of
the object nest, can result in executing any method out of Nest.n(), NestA.n() or
NestB.n(). Accordingly, the execution of method m1 can propagate any definition out
of D0, D1 and D2 to the exit of the method. When considering only the static type Nest
declared for the reference nest, we may erroneously conclude that only D1 propagates
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Listing 2.5. A sample Java program

1 class ClassUT {
2 private Nest nest;
3 ClassUT(Nest n){
4 nest = n;
5 }
6 void m1(int p){
7 if (p<0) nest.n();
8 }//D0, D1, D2
9 void m2(){

10 if (!(nest instanceof NestA)) return;
11 nest.n();
12 } //D2
13 void m3(int p){
14 if (!(nest instanceof NestB)) return;
15 m1(p);
16 }//D0
17
18 // ...
19
20 void doSomething(){
21 int v = nest.i ;
22 / do some computation with v/
23 }
24 }
25 class Nest{
26 protected int i ;
27 Nest(){i = 0;} //D0
28 void n(){i = 1;} //D1
29 Nest f(){ / lot of code; / return this;}
30 }
31 class NestA extends Nest{
32 void n(){i = 2;}//D2
33 }
34 class NestB extends Nest{
35 void n(){}//D0
36 }

until the exit of m1, because of the call to Nest.n(). To correctly identify the possible
flows of data related to method m1, a static data technique must know the possible
dynamic bindings of the call nest.n(). In cases like this, we can statically identify the
correct bindings with a simple and efficient flow-insensitive may-alias analysis, since in
this case nest could be of any subtype of Nest.

Method m2 shows that the use of flow-insensitive information may not be sufficient
in general, since it can produce over-approximated results. Executing method m2 may
lead to calling method nest.n() at line 11, if the condition at line 10 holds. But this
condition restricts the dynamic type of nest to NestA, and thus only definition D2 can
propagate to the exit of method m2. In cases like this, flow-insensitive may-alias analy-
sis over-approximates the behavior of m2, identifying the propagation of the (infeasible)
definitions D0 and D1, because their propagation is constrained by flow-sensitive infor-
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mation. Flow-sensitive alias analysis can provide the information needed to correctly
identify the dynamic propagation of the definitions (that is, D2 only), but flow-sensitive
alias analysis is even more computationally expensive than flow-insensitive analysis.

Method m3 exemplifies the need for further extending the flow sensitive analysis,
to handle the invocation context of the method calls. Method m3 may call nest.n()
indirectly, as a result of calling method m1 at line 15. However, while the direct call
of m1 can propagate all the definitions D0, D1 and D2, the call of m1 in this context
propagates only D0. In method m3, the condition at line 14 restricts the type of nest at
line 15 to NestB, and thus only the definition D0 can propagate to the exit of method
m3. Thus, the already computational expensive flow-sensitive analysis must be made
invocation context-sensitive, at the price of further increased complexity [Ryd03].

In general, program paths and aliases through methods depend on the context in which
they are invoked. The more complex the inter-procedural data flow of an application
is, the more there is a need for context sensitive alias analysis for detecting sound
information and avoid infeasibility. However, context sensitive analyses struggle on
applications with a complex inter-procedural control flow, for their computational cost.

Data flow approaches must trade-off between precision and affordability on several
design decisions related to data flow analysis, alias analysis and their combination.
Many approaches often end up with embracing a mix of (different) under and over-
approximations that make unclear the degree of approximation of the final technique.
For example, most of the implementations of data flow analysis used for testing do not
include any alias analysis, introducing strong approximations to increase the applica-
bility of the technique.
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Chapter 3

Data Flow Testing

Data flow testing refers to a body of techniques that use data flow ab-
stractions as test objectives, following the idea that the effectiveness (i.e., the
probability of revealing faults) of a test suite is related to its ability to exercise
the data relationships of the program under test. In recent times, data flow
testing has attracted new interest in the context of testing object-oriented sys-
tems, since data flow information is well suited for capturing relations among
the object states, and can provide useful information for selecting interesting
method interactions to test.

Data flow testing is a form of testing that identifies data flow abstractions as test
objectives to both evaluate the quality of test suites and guide the generation of test
cases. In this chapter, we describe the main data flow testing approaches and discuss
their effectiveness and limits.

Section 3.1 introduces data flow testing concepts and criteria as originally defined
for testing procedural programs. Section 3.2 focuses on the application of data flow
techniques for testing object-oriented systems, where data flow testing has been pro-
posed to effectively identify combinations of methods that elicit the state based behav-
ior of classes. Section 3.3 discusses the problems and limitations of data flow testing
techniques, limitations that we address in this thesis.

3.1 Data Flow Criteria

Data flow testing techniques identify data relations as test objectives, and set coverage
requirements on definitions, uses and definition use pairs identified by means of data
flow analysis.

Data flow testing builds on the idea that if executing a line of code produces a wrong
value, to effectively reveal the fault we need to execute not only the faulty line of code,
but also a line of code that uses the erroneous value in some computation that will
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Listing 3.1. Division by Zero Example
1 if(a==1){
2 c = 0; //bug
3 }
4 ...
5 if(b==1){
6 a = b/c;
7 }

lead to an observable failure. Consider for example the code snippet in Listing 3.1, and
assume that the assignment c = 0 at line 2 is faulty, since it causes a division by zero
at line 6. To reveal the fault, we need not only to execute the statement at line 2, but
also to pair it with the use at line 6, which causes an exception.

Building on this, researchers have proposed several data flow adequacy criteria,
pairing definitions and uses in different ways, and using more or less thorough coverage
requirements.

In the following we discuss the main data flow criteria and techniques described in
literature, and we show how they relate to each other and to other structural coverage
criteria.

Criteria

Data flow testing criteria consider data dependencies between definitions and uses in
various ways. A common data flow testing criterion requires a test suite to exercise
every definition use pair identified over an application under test in at least one program
execution [Her76, LK83]. This criterion is known as the all-pairs or reach coverage
criterion, and follows the original intuition that an erroneous value computed in a
statement can be revealed only when used in another statement.

The all-pairs criterion can be extended to enforce the coverage of branches and
statements as well, since satisfying definition-use pairs does not guarantee the execu-
tion of all the control elements of the application, and statement coverage is usually
considered a minimum requirement while testing an application.

The all-uses criterion, proposed by Rapps and Weyuker, combines data flow and
branch coverage, by requiring a test suite to execute at least one kill-free subpath from
each definition to each use reached by the definition and each direct successor statement
of the use [RW85, CPRZ89]. By requiring the execution of all the successor statements
of the uses in predicates, the all-uses criterion forces all branches of the application to
be taken. We can also say that the all-uses criterion subsumes both the all-pairs and
the branch criterion, that is, a test suite that satisfies the all-uses always satisfies both
all-pairs and branch as well.

A more thorough data flow criterion, the all-du-path criterion, requires the exe-
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cution of every path between every definition and use of the same variable [RW85,
CPRZ89]. By covering all definition use pairs, the all-pairs criterion requires to execute
at least a kill-free path between the definition and the use, but there can be several
paths between the definition and the use which elicit different behaviours of the ap-
plication. The all-du-path criterion requires to execute all kill-free paths between each
definition use pair, and thus subsumes the all-pairs criterion, but can be difficult to ap-
ply, as the number of paths between definitions and uses can be exponential in the size
of the program unit — in particular, we are not aware of any work that applied the
all-du-path criterion on industrial-size software.

All the criteria discussed above have a relatively high cost, for they identify nu-
merous test requirements, and require complex tests to satisfy them. A simpler, but
less powerful criterion is the all-defs adequacy criterion, which requires a test suite to
execute at least one use for each definition in the program under test [RW85, CPRZ89].

Effectiveness

Despite the amount of work on data flow criteria [RW85, CPRZ89, Nta84, SFP+15],
experimental results on their effectiveness are still limited and inconclusive. Some
studies indicate that data flow information is useful for exercising corner cases and
that test suites with high data flow coverage performs better than test suite obtained
targeting structural criteria [FW93, SJYH09, VMGF13]. However, the work presented
so far does not provide enough evidence of the existence of a causal relation between
the execution of data flow abstractions and test suites effectiveness. Test suites that
satisfy data flow criteria are generally bigger in size than suites for structural criteria,
and thus the increase of effectiveness may depends simply on the number of test cases
and not on the effectiveness of the criterion.

The few studies that experimented on suites with a fixed size do not support the the-
sis arguing that satisfying data flow relations is more effective than satisfying branches
or statements. Frankl and Weiss studied the effectiveness of the all-uses criteria [FW93];
they investigated whether all-uses adequate test suites are more likely to expose bugs
than branch coverage adequate ones. They compared the fault detection ratio obtained
by test suites with different all-uses and branch coverage values of different size, on
each and every 9 small-size Pascal program seeded with errors. They found that test
suites with high all-uses coverage are more effective than test suites with high branch
coverage, but also bigger in size. This is an intuitive result, since all-uses subsumes
branch coverage, but their data do not support the thesis that the probability of spot-
ting a failure increases as the percentage of def-use pairs or branch covered increases,
nor give conclusive results in the case of equal-size test suites.

Hassan and Andrews reached similar results [HA13]. They compared the effective-
ness of different coverage metrics on fifteen programs of different languages (C, C++
and Java) with seeded faults. In their experiment, they controlled the size of the suites,
generating different suites of size between 3 and 50 tests. They report that when test
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suite size is taken into account all-uses coverage performs similarly to branch coverage.
They do not investigate the effectiveness of suites of different size obtained to maximise
the different criteria though.

Hutchins et al. investigated the effectiveness of all-pairs with respect to branch
coverage and random testing [HFGO94]. The main difference between this work and
Frankl and Weiss’ work is that the all-pairs criterion does not subsume branch cov-
erage. They report that both all-pairs and branch test suites are more effective than
suites selected randomly, but neither all-pairs nor branch coverage can be considered
better than the other criterion, since they frequently detect different faults and thus are
complementary in their effectiveness.

Santelices et al. [SJYH09] studied the effectiveness of coverage metrics when used
in fault-localization techniques, which are techniques used in debugging to assist testers
in finding the faults that caused an execution to produce incorrect outputs. Their study
shows that neither structural nor data flow coverage perform best for all faults, but that
different kinds of faults are best localized by different coverage criteria.

Mathur and Wong, Offut et al. and Frankl et al. compared data flow testing with
mutation testing [MW94, OPTZ96, FWH97], a testing technique that mutate program
by seeding faults, and selects test cases that distinguish the mutated from the original
program. These studies suggest that mutation testing in practice often subsumes all-
uses coverage, and that mutation testing performs slightly better than all-uses. For
example, Offutt et al. observed an increase of effectiveness of 16%. On the other hand,
test suites generated for mutation testing are more costly to obtain and execute: They
are much bigger in size, requiring on the average from 200% to 350% more tests than
data flow suites, and the seeding of faults necessary to use the technique is particularly
expensive in terms of execution overhead.

It is important to note that all the experiments but Hassan and Andrews’ one were
conducted on limited sets of small procedural programs, thus is not clear whether the
results could be generalised to industrial size software.

3.2 Data Flow Testing of Object-Oriented Software

Data flow testing has attracted new research interest in the context of testing object-
oriented systems. Testing object-oriented systems differs from testing procedural pro-
grams, due to the different structure and state based behaviour of object-oriented pro-
grams. To test a class is not sufficient to test its single methods in isolation as we test
procedures, but we have to invoke sequences of different methods (of one or different
classes) that set the object state and that verify the behavior of the object while it is
in that particular state. This is because a given method can produce different results
depending on the state of the object when the method is invoked.

Standard structural testing approaches based on branches and statements give little
guidance for selecting a reasonable combinations of methods and objects to test, be-
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Listing 3.2. Code excerpt from Apache Commons Lang
1 public class MutableFloat {
2 private float value;
3 public MutableFloat(float value) {
4 this.value = value;
5 }
6 public void add(Number operand) {
7 this.value += operand.floatValue();
8 }
9 public boolean isNaN() {

10 return Float.isNaN(this.value);
11 }
12 public boolean isInfinite() {
13 return Float.isInfinite(this.value);
14 }
15 ...

cause they focus on the control flow of single methods ignoring the state based nature
of objects. On the contrary, data flow information can capture the state based depen-
dencies between methods that interact on the same state variables, and thus can be
used to identify relevant state based interactions to test. Below we discuss how data
flow testing has been extended for testing methods and classes.

3.2.1 Intra-Class Data Flow Testing

Data flow testing identifies relevant combinations of methods that interact on the same
variables, and which properly exercise the intended behavior of a class under test.
Consider for example the program reported in Listing 3.2 taken from a popular Java
open source project. The class MutableFloat encapsulates a float value, and pro-
vides some methods to manipulate it. The methods MutableFloat.add() and Muta-

ble.isInfinite() interact through the variable value. The variable value is defined
(assigned) in method MutableFloat.add() and used (read) in method Mutable.isIn-

finite(), thus forming a definition use pairs between the two methods on value.
A typical data-flow testing criterion would require a test case that calls the method
MutableFloat.add() and eventually calls Mutable.isInfinite() in such a way that
the result of the latter method is computed based on the value assigned by the for-
mer method, while common control flow criteria that targets statements and branches
require only the individual elements to be executed, but not necessarily their combi-
nation. This test requirement increases the chances that the effects of a possible faulty
value assigned to variable value in method MutableFloat.add() propagates to the
use in method Mutable.isInfinite() and manifests as a failure, and better exercises
the intended behavior of the class.

Harrold and Rothermel where the first to use data flow abstractions as test objectives
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for testing classes [HR94]. They proposed a framework to compute definition use pairs
over object-oriented systems and to adapt existing criteria (with a particular attention
to all uses criterion). They distinguish between intra-method, inter-method and intra-
class definition use pairs as discussed in Section 2.2.1, emphasizing the importance of
using intra-class definition use pairs to identify the relevant sequences of methods to
execute.

Buy et al. combine data-flow analysis, symbolic execution and automated reason-
ing to generate test cases for classes [BOP00]. They exploit symbolic execution to
obtain the method pre-conditions that must be satisfied in order to traverse a feasi-
ble definition-clear path for each definition use pair, and use automated deduction to
determine the order of method invocations that satisfy the preconditions of interest.

Other techniques employs meta-heuristic search algorithms to generate test cases
that exercise definition use pairs. Liaskos and Roper [LRW07], Ghiduk et al. [GHG07],
Miraz [Mir10] and Vivanti et al. [VMGF13] defined approaches that support the auto-
mated generation of tests cases for meeting data flow criteria for testing classes. How-
ever, these approaches implement many approximations in the data flow analysis for
increasing the scalability of the techniques, of the type we discussed in Section 2.3,
potentially reducing the effectiveness of the approaches.

3.2.2 Inter-Class Data Flow Testing

Inter-class data flow testing techniques extend object-oriented data flow testing ap-
proaches to identify combination of methods that interact on the nested state of classes.
As discussed in Section 2.2.2, object-oriented programs define class states as sets of
class fields that may be of primitive or structured types. In the latter case, the fields re-
fer to objects that in turn include other fields, which define nested state dependencies
between methods. Inter-class data flow testing techniques use inter-procedural data
flow abstractions, such as contextual definition use pairs of class state variables, as test
objectives to select test cases that exercise the complex nested state based behavior of
classes.

Consider for example the classes Robot and Armor in Listing 3.3. The class Robot
contains the class Armor as part of its state (field Robot.armor at line 2), and the be-
havior of the robot depends on the internal state of its armor (that is on the value of the
class state variables Robot.armor.damage and Robot.armor.value). When the robot
moves, through the invocation of method Robot.move(), its speed depends on the
value of the class state variable Robot.armor.damage. A robot moves slowly if its ar-
mor is damaged, faster if not (method Robot.computeSpeed() at line 13, which in-
vokes the method Armor.isDamaged() at line 14). The value of Robot.armor.damage
depends on the armor status, which is modified by multiple invocations of the method
Robot.collides() at line 5.

Therefore there is a nested state based interaction between the methods Robot.col-
lides() and Robot.move(): the method Robot.collides() modifies the internal
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Listing 3.3. Class Robot

1 public class Robot {
2 private Armor armor;
3 private double weight;
4
5 public void collides(Robot r){
6 armor.inflictDamage(weight*r.speed());
7 }
8
9 public void move(double dir) {

10 setPosition(computeSpeed(), dir);
11 }
12
13 public double computeSpeed(){
14 if(armor.isDamaged())
15 return 0.5*weight;
16 else return 1.2 * weight;
17 }
18 }

19
20
21 class Armor{
22 double value;
23 boolean damaged;
24
25 public void inflictDamage(double mass){
26 value = value - 0.3*mass;
27 if(value < 1)
28 damaged = true;
29 }
30
31 public boolean isDamaged(){
32 return damaged;
33 }
34
35 }

state of the robot armor, which changes the behavior of the method Robot.move().
This interaction is captured by the contextual definition use pair of the class state vari-
able Robot.armor.damaged reported in Figure 3.1 that can be exercised only by a test
case that invokes the method Robot.collides() multiple times until the the amor is
damaged, and then the Robot.move(). Control-flow criteria and intra class data flow
testing techniques do not identify any element that characterize this complex interac-
tions, being limited to control structures and intra-class interactions, respectively.

Figure 3.1. A contextual definition use pair of variable Robot.armor.damaged

Context Point
Definition Robot::collides(Robot) [6]! Armor::inflictDamage(double) 28
Use Robot::move(double) [10]! Robot::computeSpeed() [14]! Armor::isDamaged() 32

Matena et al. proposed and experimented inter-class testing based on inter proce-
dural data flow analysis, thus extending the Buy et al.’s work [MOP02]. While Buy et
al. generate test sequences targeting intra-procedural definition use pairs, Martena et
al. use the same combination of techniques targeting inter-procedural definition use
pairs.

Souter and Pollock, and Denaro et al. [SP03, DGP08] have formalized the core
object-oriented data flow testing concepts. Souter and Pollock noticed that to properly
capture the inter procedural control flow relations between methods and classes, it
is necessary to distinguish definitions and uses according to their invocation context,
formalised the concept of contextual definition-use pair reported in Section 2.2.2, and
proposed to use contextual definition use pairs to define thorough data flow testing
techniques for object-oriented systems.
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Denaro et al. extended Harrold and Rothermel’s framework with the concepts intro-
duced by Souter and Pollock. They formalised the notion of contextual intra method,
inter method and intra class definition use pairs and testing, emphasising that con-
textual definition use pairs computed over subsystems can identify interesting state
based relations between a class and the classes that compose its state. Denaro et al.
also propose an efficient algorithm to compute contextual definition use pairs, which
they implemented in DaTeC, a protoype tool for computing contextual data flow cov-
erage [DGP09].

Souter and Pollock and Denaro et al. have focused on the formalization of contex-
tual data flow analysis and on contextual data flow testing criteria, respectively, leaving
open the problem of automatically generating test cases that exercise feasible contex-
tual definition use pairs.

In this thesis we share the vision of Souter and Pollock and of Denaro et al. that
contextual definition use pairs are well suited to select relevant method sequences to
test, and introduce the Dynamic Data Flow Testing technique that uses dynamically
identified contextual definition use pairs to automatically generate relevant test cases.

3.3 Open Challenges of Data Flow Testing

Despite the enormous amount of work on data flow testing, there are still unresolved
problems that derive from the imprecision of static data flow analysis and the complex-
ity of efficiently generating test suites that achieve a stable data flow coverage.

Classic data flow testing relies on static data flow analysis to compute the set of
definition use pairs to use as test objectives. Data flow analysis can be imprecise when
analyzing programs with a complex structure, and may both identify data flow elements
that result infeasible and miss data flow elements that depend on the dynamic behavior
of the application. The presence of infeasible elements complicates the identification of
the right set of test objectives. Missing feasible data relations may reduce the efficacy
of data flow test suites.

The large amount and high complexity of the test objectives identified with data
flow testing criteria can be hardly managed without proper automated tools. Automat-
ing data flow testing is therefore necessary, but as the present time there is a lack of
techniques and tools for both computing data flow coverage and automatically gener-
ating test cases that satisfy data flow abstractions.

Below we discuss more in detail these two problems, focusing on their impact on
the effectiveness and applicability of data flow testing, and on the proposed solutions.

3.3.1 Handling the Imprecision of Data Flow Analysis

The static nature of data flow analysis may under or over-approximate the results, thus
leading to a discrepancy between the data flow abstractions identified by the data flow
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Figure 3.2. Relation between data flow abstractions statically identified with data flow
analysis and feasible data flow abstractions.

analysis, and the data flow abstractions that are executable in the program under test.
Figure 3.2 visualises the relation between statically identified and feasible data flow
abstractions: classic static data flow analysis may identify both a set of feasible data
flow abstractions (Feasible and detected) and a set of data flow relations that are not
executable (Infeasible but detected), and may miss a set of feasible data flow elements
(Feasible but missed). The size of the Infeasible but detected and the Feasible but missed
sets determines the quality of data flow testing.

The presence of Infeasible but detected elements complicates the generation of test
cases that target data flow test objectives, and reduces the relevance of data flow cov-
erage metrics. In the presence of infeasible test objectives, both testers and automated
tools may waste effort in trying to satisfy test objectives that are impossible to execute,
diverting the testing activity. Testers may also find difficult to interpret low coverage
measures, because of being unable to determine if low values depend on missed feasible
objectives or infeasible ones.

The presence of feasible but missed data flow elements impact negatively on the
ability of data flow testing of revealing faults. The rationale of data flow testing is that
to detect faults it is necessary to stress all the data dependencies of the application, but
when a data flow analysis misses many feasible elements, the data flow testing tech-
nique works on a subset of test objectives that badly approximate the set of executable
ones, and consequently can leave untested important data relations of the application.
To maximise fault finding, it is necessary for a data flow testing technique to consider
the majority of the executable definition use pairs, to guarantee an appropriate cover-
age of the application execution space.

The size of the infeasible but detected and the feasible but missed sets depends on
both the complexity of the analyzed application and the accuracy of the implemented
data flow analysis.

Since the imprecision of data flow analysis stems mostly from the dynamic features
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Figure 3.3. Interplay between feasible and infeasible data flow elements in the case of
strongly over-approximated analysis

of programs, when targeting simple programs that do not use extensively dynamic fea-
tures such as pointer aliases and dynamic binding, a standard data flow analysis is both
simple to implement and apply, and precise in computing the right set of test objectives.

However, when targeting complex programs that heavily rely on dynamic con-
structs, it becomes difficult to design a static analysis with a good tradeoff between
precision and scalability. Data flow analysis abstracts the dynamic behaviors of the
program, which cannot be modelled precisely statically, and produces decidable either
over or under-approximations. Over-approximating the dynamic behavior of the pro-
gram improves the completeness of the analysis (reduces the amount of feasible and
detected referring to Figure 3.2) at the cost of increasing the amount of infeasible but
detected elements. Under-approximating the dynamic behavior of the program limits
the amount of infeasible elements at the cost of increasing the amount of feasible but
missed elements.

Precise implementation of data flow analysis are complemented with some flow
and context-sensitive alias analyses to capture pointer aliases and dynamic binding,
but they hardly scale to large applications. Implementations that lay down precision
for scalability to apply data flow analysis to large and complex systems, rely either
on strong over-approximations of the dynamic behavior of the application, such as
modelling aliases and dynamic binding using a flow-insensitive alias analysis, or on
strong under-approximations of the dynamic behavior, for instance considering only
the binding of procedures declared statically in the program.

Strong over and under-approximations have a big impact on the precision of the
results. Implementations based on strong over-approximations potentially lead to the
identification of the majority of feasible elements, but they also identify a number of
infeasible but detected elements that can be exponential the number of feasible ones
(Figure 3.3). The high number of infeasible test objectives strongly reduces the appli-
cability of the technique.
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Figure 3.4. Interplay between feasible and infeasible data flow elements in the case of
strongly under-approximated analysis

Most current data-flow testing prototype tools rely on data flow analyses based on
strong under-approximations of the dynamic features of programs, that simplify the
implementation, by reducing the number of identified definition use pairs (feasible
and infeasible) at the cost of increasing the number of feasible but missed elements.
These discrepancies between the data flow abstractions identified by a strongly under-
approximated data flow analysis and the data flow abstractions that are executable in
the program under test are pictured in Figure 3.4.

Most of techniques surveyed in this section focus on data flow abstractions com-
puted within single procedures or methods, and exclude the inter procedural con-
trol flow, the dynamic binding of procedures, the representation of arrays and pointer
aliases to a certain extent [FW93, HFGO94, FWH97, HA13]. Also the most advanced
approaches for testing object-oriented systems do not take in account aliases and poly-
morphism, and under-approximate dynamic bindings, in their implementation [MOP02,
DGP08, VMGF13].

Most of the work surveyed in this section does not evaluate the impact of the tol-
erated under-approximation on the effectiveness of the approaches. The few extensive
studies on the infeasibility problem of data flow analysis discuss the problem but do
not deeply investigate the impact of feasible but missed elements on data flow test-
ing [Wey90, FW93, DGP08].

This thesis starts from the hypothesis that data flow analyses that strongly under-
approximate the dynamic behavior of the application can miss many data flow abstrac-
tions relevant to testing, thus compromising the effectiveness of the technique. We
hypothesise that this problem is pervasive in current data flow testing techniques, es-
pecially in the context of object-oriented systems that heavily rely on dynamic features.
We further hypothesise that neither strong under nor over-approximation produce anal-
ysis suitable for computing test objectives for programs with a complex dynamic behav-
ior, because they either miss too many feasible elements, or identify too many infeasible
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ones, and thus we need a more precise approach to capture the right objectives for data
flow testing.

We further discuss the unsuitability of strongly approximated data flow analyses for
data flow testing, through the example reported in Listing 3.4 that highlight the im-
pact of over and under-approximated data flow analyses on the amount of feasible but
missed and infeasible but detected elements. In the example, we discuss the testing of a
simple object-oriented application using two different analyses. One analysis strongly
over-approximates dynamic biding by resolving every possible bind relying on the class
hierarchy of the program, and the other strongly under-approximates it by resolving
only static binding of procedures.

The program shown in Listing 3.4 comprises six Java classes: the class-under-test
Cut, the class Level that is specialized in L1, L2, L3, and a factory class LevelFactory.

Cut implements the methods met1() and met2(), which modify and use the class
state variables Cut.v0 and Cut.lev. The variable Cut.v0 (line 2) is of type boolean,
while Cut.lev (line 3) is statically declared as of type Level, but at runtime is always
of concrete type L1.

Class L1 (line 22), which extends the abstract class Level, includes the state vari-
able L1.sub1 (line 24) of static type Level, that is always of concrete type L2 (line 38).
Therefore, at runtime the classes L1 and L2 compose the (nested) state of the class Cut.
The class L3 (line 49) extends Level as well, but is unrelated with the class under test
Cut.

In classes Cut, L1 and L3 the state variables of type Level are instantiated using the
class LevelFactory (line 63). LevelFactory implements the common design pattern
factory: It returns new instances of the type Level by instantiating some of the subtypes
according to a selector value passed as parameter.

Table 3.1 reports the feasible contextual definition use pairs of class Cut that shall
be used as test objective and that we computed manually. Each row lists a definition
use pair composed of an identifier (column Pair), the variable name (column Variable),
the line of code that corresponds to the variable definition within the call chain that
may lead to the definition (column Def) and the line of code that corresponds to the
use within the corresponding call chain (column Use). The variable name indicates
also the associations between class fields and objects according to their alias relations.
For example the pair p3 refers to the variable Cut.lev.v1 because the field Cut.lev is
alias of an object of type L1.

These feasible pairs capture the state based interactions between the class Cut and
the classes L1 and L2 that comprise its state. In particular, the pair p4 capture the
non-trivial combination of method calls elicited by test3(), which leads to the failure
of the assertion at line 11. Listings 3.5 reports a test suite composed of the test cases
test1() and test3() that executes all the feasible pairs listed in Table 3.1.
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Listing 3.4. Class Cut Example

1 class Cut {
2 boolean v0 = false;
3 Level lev = LevelFactory.makeLevel(1);
4 void met1(){
5 lev .doA();
6 v0 = true;
7 }
8 boolean met2(){
9 boolean ok = true;

10 if (v0) ok = lev.doB();
11 assert ok;
12 //Bug: this assertion can fail !
13 return ok;
14 }
15 }
16
17 abstract class Level{
18 abstract void doA();
19 abstract boolean doB();
20 }
21
22 class L1 extends Level{
23 boolean v1 = false;
24 Level sub1 = LevelFactory.makeLevel(2);
25 void doA() {
26 if (v1) sub1.doA();
27 }
28 boolean doB() {
29 v1 = true;
30 boolean ret = sub1.doB();
31 return ret ;
32 }
33 }
34
35
36
37

38 class L2 extends Level{
39 boolean v2 = false;
40 void doA() {
41 v2 = true;
42 }
43 boolean doB() {
44 if (v2) return false;
45 return true;
46 }
47 }
48
49 class L3 extends Level{
50 boolean v3 = false;
51 Level sub3 = LevelFactory.makeLevel(4);
52 void doA() {
53 if (v3) sub3.doA();
54 v3 = sub3.doB();
55 }
56 boolean doB() {
57 if (v3) sub3.doA();
58 v3 = sub3.doB();
59 return true;
60 }
61 }
62
63 class LevelFactory{
64 static Level makeLevel(int selector){
65 switch(selector){
66 case 1: return new L1();
67 case 2: return new L2();
68 case 3: return new L3();
69 //case 4, case 5, ...
70 default: return null;
71 }
72 }
73 }

Listing 3.5. Test Cases for Class Cut, reported in Listing 3.4

1 //executes pair p1
2 @Test
3 public void test1() {
4 Cut cut = new Cut();
5 cut.met2();
6 }
7
8
9

10

11 //executes pair p2
12 @Test
13 public void test2() {
14 Cut cut = new Cut();
15 cut.met1();
16 cut.met2();
17 }
18
19
20

21 //executes pairs p2 p3 p4
22 @Test
23 public void test3() {
24 Cut cut = new Cut();
25 cut.met1();
26 cut.met2();
27 cut.met1();
28 cut.met2();
29 }
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Table 3.1. Feasible definition use pairs of class Cut

Pair Variable Def at Through call chain Use at Through call chain

p1 Cut.v0 2 Cut.<init> 10 Cut.met2
p2 Cut.v0 6 Cut.met1 10 Cut.met2
p3 Cut.lev[L1].v1 29 Cut.met2!L1.doB 26 Cut.met1!L1.doA
p4 Cut.lev[L1].sub1[L2].v2 41 Cut.met1!L1.doA!L2.doA 44 Cut.met2!L1.doB!L2.doB

Table 3.2 reports a subset of the definition use pairs identified with a data flow anal-
ysis that strongly over approximate the possible dynamic behavior of the application
(hereafter OADF, over-approximated data flow analysis), which integrates a may-alias
static analysis to resolve alias relations [OW91, LH03]. OADF computes a conserva-
tive over approximation of the set of possible definition use pairs, with awareness of
polymorphism and dynamic binding, relying on the static type hierarchy to resolve
polymorphic types.

We refer to the set of objects that the over-approximated may-alias analysis infers,
and that may bind to the variables used throughout the program, as the may-alias set of
a variable at a program point. For instance, the may-alias set of variable Cut.lev used
at the call-point lev.doA() (line 5 in Listing 3.4) consists of the objects instantiated
within the method LevelFactory.makeLevel() at lines 66, 67 and 68. The OADF
may-alias set binds the variable Cut.lev to the objects of type L1, L2 and L3, ignoring
the fact that the call to LevelFactory.makeLevel() at line 3 always returns an object
of type L1, and thus identifies of many infeasible pairs.

Only the first four pairs, p1, p2, p3 and p4, that appears in both Tables 3.2 and 3.1
are feasible, all the other pairs that appear in Table 3.2 and many more that we do not
report in the table for the sake of brevity are infeasible but detected pairs. They derive
from alias relations that are inferred statically by the conservative may alias analysis
and that do not occur at runtime. In this example, OADF captures all the important
useful data flow information, but also a lot of false positives that cause the divergence
of the testing effort, complicating data flow testing.

Under-approximate data flow analysis (hereafter UADF) binds variables to objects by
relying on the static declarations of types in the source code, without any mechanism
to resolve reference aliasing, with lower computational costs and better scalability than
OADF.

UADF pays the lower cost and better scalability than OADF with lower precision
that derives from less insights on the behavior of a class than OADF. For instance, in this
example of Listing 3.4, UADF identifies only the pairs p1 and p2 of Table 3.1, and does
not identify the pairs related to the calls of methods sub.doA() (line 5) and sub.doB()

(line 10), because the static binding of these methods through the variable sub of class
Level does not link to any concrete implementation of the methods. Thus, the only
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Table 3.2. Definition use pairs computed with OADF for the methods of class Cut,
reported in Listing 3.4

Pair Variable
[may-alias object type]

Def
at

Through call chain Use
at

Through call chain

p1 Cut.v0 2 Cut.<init> 10 Cut.met2
p2 Cut.v0 6 Cut.met1 10 Cut.met2
p3 Cut.lev[L1].v1 29 Cut.met2!L1.doB 26 Cut.met1!L1.doA
p4 Cut.lev[L1].sub1[L2].v2 41 Cut.met1!L1.doA!L2.doA 44 Cut.met2!L1.doB!L2.doB
p5 Cut.lev[L1].sub1[L3].v3 54 Cut.met1!L1.doA!L3.doA 53 Cut.met1!L1.doA!L3.doA
p6 Cut.lev[L1].sub1[L3].v3 54 Cut.met1!L1.doA!L3.doA 57 Cut.met2!L1.doB!L3.doB
p7 Cut.lev[L1].sub1[L3].v3 58 Cut.met2!L1.doB!L3.doB 53 Cut.met1!L1.doA!L3.doA
p8 Cut.lev[L1].sub1[L3].v3 58 Cut.met2!L1.doB!L3.doB 57 Cut.met2!L1.doB!L3.doB
p9 Cut.lev[L1].sub1[L3].sub3[L2]

.v2
41 Cut.met1!L1.doA!L3.doA

!L2.doA
44 Cut.met2!L1.doB!L3.doB

!L2.doB
p10 Cut.lev[L2].v2 41 Cut.met1!L2.doA 44 Cut.met2!L2.doB
p11 Cut.lev[L3].v3 54 Cut.met1!L3.doA 53 Cut.met1!L3.doA
p12 Cut.lev[L3].v3 54 Cut.met1!L3.doA 57 Cut.met2!L3.doB
p13 Cut.lev[L3].v3 58 Cut.met2!L3.doB 53 Cut.met1!L3.doA
p14 Cut.lev[L3].v3 58 Cut.met2!L3.doB 57 Cut.met2!L3.doB
p15 Cut.lev[L3].sub3[L1].v1 29 Cut.met2!L3.doB!L1.doB 26 Cut.met1!L3.doA!L1.doA
p16 Cut.lev[L3].sub3[L1].sub1[L2]

.v2
41 Cut.met1!L3.doA!L1.doA

!L2.doA
44 Cut.met2!L3.doB!L1.doB

!L2.doB
p17 Cut.lev[L3].sub3[L2].v2 41 Cut.met1!L3.doA!L2.doA 44 Cut.met2!L3.doB!L2.doB
... ... ... ...

information captured with UADF is the set-get behavior between method met1() and
met2() that define and read the variable Cut.v0. These pairs are exerecised with a
test suite composed of the test cases test0() and test1() of Listings 3.5, which does
not exercise the state based interactions between Cut, L1 and L2 that are exercised
by test3() that would expose the fault. In this example UADF does not identify any
infeasible pair, but misses the critical pairs that would expose the failure.

The example witnesses the impact that data flow analysis have on the applicabil-
ity and effectiveness of data flow testing. Analyses that strongly over-approximate the
application behavior may hide useful information in a lot of false positives, under-
mining the usefulness of the approach, while analyses based on data flow information
computed without alias information may miss important test objectives, reducing the
effectiveness of data flow testing.

3.3.2 Automating Data Flow Testing

As in the case of all structural testing techniques, data flow testing cannot be applied
without a reasonable automation support. Both computing data flow coverage and
generating test cases with data flow objectives is intuitively more difficult that comput-



40 Data Flow Testing

ing targeting simple structural objectives, for the target involves pairs of and not just
single program locations. The large amount of data flow objectives further increased
the cost of automating data flow testing, since the number of definition use pairs can
be exponential in the size of the program, in particular when distinguishing definition
use pairs using contextual information [SP03, DGP08].

Despite the needs of automation, the many problems of automating data flow test-
ing hinder the production of tools, and most tools for structural testing target classic
structural elements like statements, branches and conditions, and do not support data
flow elements [YLW06].

Automating the computation of data flow coverage requires runtime tracking the
active and killed definitions, and pairing them with the executed uses. This dynamic
tracking have to be implemented either by instrumenting the original code or modi-
fying the execution environment, and can generate a significant overhead in terms of
execution time [SH07]. Despite the many proposed data flow coverage techniques,
there are only few research tools for data flow testing, which support a limited set of
programming languages and features, as opposed to classic structural coverage, like
statement and branch coverage, that are often supported directly both by the compiler
and commercial tools [YLW06].

The scarce availability of tools for computing data flow coverage complicates also
the research on data flow test generation that requires the tracking data flow coverage.
The early attempts to completely automate data flow testing, from coverage to test case
generation, exploit either model checking or search based algorithms [Gir93, HCL+03,
LRW07, GHG07, Mir10]. These tools focused either on procedural programs or on
sample classes, stripped out of their dynamic features.

The current data flow testing tools work with strongly under approximated data
flow analyses that compute only a subset of the executable definition use pairs. There
is no evidence on how automated test generators would perform in the presence of test
objectives identified with more precise analyses that limit the number of missed but
feasible elements.



Chapter 4

Dynamic Data Flow Analysis

This section describes Dynamic Data Flow Analysis (DReaDs), a new tech-
nique to perform a sound inter-procedural data flow analysis by means of
dynamic analysis. Differently from static analyses that compute data flow
abstractions over the source code, DReaDs works by monitoring the program
execution, identifying data flow information on the observed execution traces.
By analysing the memory while executing the program, DReaDs overcomes
many limitations of static approaches in dealing with the dynamic behavior
of software, reducing the number of both the infeasible but detected, and the
feasible but missed data flow elements.

This section describes Dynamic Data Flow Analysis (DReaDs1), a dynamic software
analysis technique for computing sound inter-procedural data flow information.

DReaDs works by means of dynamic analysis: it monitors the execution of an ap-
plication intercepting memory write and read events, and maps these events to the
corresponding data flow abstractions of class state variables. The information com-
puted by Dynamic Data Flow Analysis is sound, and can complement, or substitute, the
unsound data flow information obtained by state of practice static data flow analyses.

Section 4.1 introduces the idea behind DReaDs. Section 4.2 describes the workflow
of DReaDs and its architecture that is composed of three main elements that (i) build
and maintain a model of the objects in memory during the execution of the program
(Section 4.3), (ii) exploit the memory model to map memory events to data flow ab-
straction during the execution (Section 4.4), and (iii) store the data flow information
for each class merging the information computed on different instances and traces (Sec-
tion 4.5). Section 4.6 reports on the design of a prototype implementation of DReaDs
for Java programs.

1DReaDs stands for Dynamic Reaching Definitions Analysis

41
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4.1 Objectives

The dynamic characteristics of programming languages, such as arrays, aliases and dy-
namic binding, complicate the computation of sound data flow information. Current
implementations of data flow analysis often approximate the dynamic features of pro-
grams, reducing the soundness and completeness of the results to ease the analysis and
improve its scalability, as discussed in Sections 2.3 and 3.3.

In this chapter we define DReaDs, a dynamic inter-procedural data flow analysis
technique that computes precise data flow information, reducing the amount of infea-
sible but detected and feasible but missed data flow elements that hinder current data
flow testing approaches.

The distinctive characteristic of DReaDs is to analyze the program while executing
it, using the information available at runtime about aliases and references in memory to
compute sound data flow information. DReaDs exploits a model of the object references
that are in memory to resolve reference aliases and compute data flow abstractions
precisely.

With respect to static approaches, DReaDs computes only feasible data flow abstrac-
tions, because the computed information derives from information collected at runtime,
and identifies the data flow abstractions that depends on the dynamic behavior of the
application, which static analyses either miss or over-approximate. The completeness of
the DReaDs data flow analysis depends on the thoroughness of the analyzed executions:
the more an application is executed and analysed with DReaDs, the more complete is
the identified data flow information.

Figure 4.1 visualizes the relation between the different data flow analysis tech-
niques with respect to the feasibility of the computed data flow information. Over-
approximated analyses exceed in the number of infeasible but detected elements, while
under-approximated analyses miss many feasible elements that depends on dynamic
constructs. DReaDs aims to compute a representative subset of the feasible elements,
excluding infeasible ones and identifying elements that depends on the dynamic be-
havior of the application.

4.2 DReaDs Architecture

Although Dynamic Data Flow Analysis (DReaDs) could be generalised to work on gen-
eral programs, we propose it for inter procedural analysis of object-oriented systems,
that is, for the computation of data flow information of class state variables as defined
in Section 2.2.2. In details, given an object-oriented program, DReaDs computes the
propagation of contextual definitions of class state variables, the reachability of con-
textual uses of class state variables, and the set of (observed) contextual definition use
pairs.

The distinctive characteristic of DReaDs is to work on the observed behavior of the
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Feasible Data Flow 
Abstractions

DReaDs

Over-Approximated 
Static Analysis

Under-Approximated 
Static Analysis

Infeasible Data Flow Abstractions

Figure 4.1. Comparison of different data flow analyses with respect to feasibility

program and not on its static structure. DReaDs analyzes the memory write and read
events observed while executing the program, and computes definitions and uses of
class state variables by identifying the objects states impacted by the memory events.
DReaDs exploits a model of the references between objects present in memory, which
it creates and updates while processing the observed memory events, to map memory
accesses to data flow abstractions. The information collected on multiple objects and
traces is merged to capture the general data flow information of the application.

DReaDs is composed of (1) a component that maintains a memory model to map
both memory-load and memory-store events to the involved class state variables, (2) a
component that exploits the memory model to monitor the propagation of definitions
and the reachability of uses of the class state variables along the monitored execution
traces, and (3) a component that merges the reaching definitions and uses computed
across multiple instances and traces to produce a complete model of the dynamically
identified data flow relations.

Algorithm 1 describes the workflow of DReaDs. DReaDs takes as input a program and
a test suite, and executes all the test cases in the test suite (Algorithm 1, lines 2 and 3).
For each test case, DReaDs executes the program (lines 6 and 7) until the execution of
the test case terminates (line 11). For each execution step, DReaDs:

1. invokes the maintain memory model maintainMModel component (line 8) that
updates the memory model to represent the objects instantiated in memory and
the references between them in the current execution step. The MModel is ini-
tialised to empty at the beginning of an execution trace (line 4).

2. invokes the identify data flow events identifyDFEvents component (line 9) to
identify on the memory model which objects where impacted by a definition or
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Algorithm 1 DReaDs(Program, TestSuite)
Require: Program: The program under analysis
Require: TestSuite: A test suite for the program under analysis
1: GeneralDFInfo = EMPTY
2: while hasNextTestCase(TestSuite) do
3: TestCase = nextTestCase(TestSuite)
4: MModel = EMPTY
5: TraceDFInfo = EMPTY
6: repeat
7: State = executeStep(Program, TestCase)
8: MModel = maintainMModel(MModel, State) . section 4.3
9: TraceDFInfo = identifyDFEvents(TraceDFInfo, MModel, State) . section 4.4

10: GeneralDFInfo = mergeDFInfo(GeneralDFInfo, TraceDFInfo, State) . section 4.5
11: until ¬atEndOfProgram(State, Program)
12: end while
13: reportReachingDefs(GeneralDFInfo, Program) . section 4.5

use event, and updates the set of active definitions, observed uses and executed
pairs accordingly (variable TraceDFInfo, line 9). DReaDs updates the active def-
initions following the kill-gen logic of classic data flow analysis.

3. invokes the merge data flow information mergeDFInfo component (line 10) to
update the information on reaching definitions and reachable uses of the basic
block of the class (variable GeneralDFInfo), using the information on active def-
initions and observed uses of the current execution trace stored in TraceDFInfo.
The data flow information per basic block is initially empty (line 1), is incremen-
tally updated by the merging mechanism during the execution of the different
test cases, and is eventually exploited to report the computed information at the
end of the analysis (line 13).

4.3 DReaDs Memory Model

DReaDs maintains a runtime model of the relations between the object instances in
memory to identify the class state variables involved in assignments along an execution
trace. The memory model is a directed graph, where the nodes represent the distinct
object instances or primitive values in memory identified by their identity, and the edges
represent references between instances identified by the name of the field that set the
reference. For instance an edge from a node n1 to a node n2 with label l represents a
field l in n1 that refers to n2.

Consider, for example, the classes in Listing 4.1, the test case in Listing 4.2 and the
memory model reported in Figure 4.2. Listing 4.1 comprises three classes under test Z,
A and B; Listing 4.2 reports a test case t that execute the classes, and Figure 4.2 shows
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1 class Z{
2 private A a;
3 Z(A a){
4 this .a=a;
5 }
6 void doSmt(){
7 print(a.getB());
8 }
9 }

10

11

12 class A{
13 private B b;
14 void setB(B b){
15 this .b=b;
16 }
17 B getB(){
18 return b;
19 }
20 }
21 class B{
22 }

Listing 4.1. Classes Under Test

1 @Test
2 public void t() {
3 A a1 = new A();
4 A a2 = new A();
5 B b = new B();
6 a1.setB(b);
7 a2.setB(b);
8 Z z = new Z(a1);
9 z.doSmt();

10 }

Listing 4.2. Test t for classes Z A B

A 
#01

A 
#02

B 
#03

b b 

Z 
#00

a

Figure 4.2. Memory Model ob-
tained at the end of the execution
of t

the memory model created by DReaDs when executing the test case t.
The memory model in the figure represents the state of the objects in memory after

executing the test case t. The node A#01 represents the object of type A instantiated at
line 3 of t (where #01 is its identity hashcode). The object is part of the state of Z#00
as captured by the edge a, reflecting the fact that the state of class Z includes the field
a that refers to the object A#01. The memory model includes also an object of type B
(B#03) and another object of type A (A#02) and the relative relations.

DReaDs builds and maintains the memory model incrementally, while monitoring
the execution of the program under analysis. It initializes the model to an empty graph
for each test case (Algorithm 1, line 4), and updates the model after each execution
step (line 8) to correctly represent the status of the objects that exist in memory at that
point of the execution. The updating mechanism adds nodes and either adds or removes
edges, according to the memory related operations observed during the execution.

DReaDs adds a node to the model whenever it observes a memory reference related
to an object instance that is not represented yet. To this end, it relies on a runtime
monitoring framework that detects each referenced object, and augments the model
with a new node for each object that is not already represented in the model. In this way,
DReaDs lazily enforces the memory model to include a node for each object instances
that has been accessed at least once at runtime.

DReaDs adds and removes edges to the model when observing assignments to in-
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 0  A a1 = new A();  1  A a2 = new A();  2  B b = new B();

 3  a1.setB(b); 5  Z z = new Z(a1);  4  a2.setB(b);

Figure 4.3. Incremental construction of the memory model for the example in Fig-
ure 4.2.

stance fields. If the model already contains an edge that represents the field, then
DReaDs removes it. If the value assigned to the field is not null, then DReaDs augments
the model with a new edge from the field owner instance to the node representing the
assigned value. Every time an edge is removed, DReaDs checks whether the original
target node is still referenced by another node or by the entry point of the program.
If the node is not reachable anymore, DReaDs removes it from the graph, simulating
a garbage collector. This algorithm produces a sound representation of the objects in
memory, and contributes to reducing the size of the model.

Figure 4.3 illustrates how the model is incrementally built during the execution of
the different statements of the test case t in Listing 4.2 with respect to the example
discussed above.

DReaDs addresses array structures as special instances that include a field for each
offset in the array. Each edge between the array and any array element is labeled
with the position index of the element. Thus, the above representation and handling
generalize to arrays as well.
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4.4 DReaDs Runtime Analysis

The Runtime Analysis module monitors the program execution to identify dynamic data
flow abstractions and their propagation over a single execution trace (Algorithm 1,
line 9). The module (1) intercepts memory events at runtime and maps them to (dy-
namic) definitions and uses, and (2) keeps track of the set of active definitions and
reachable uses for any instant of the execution.

Mapping memory events to definitions and uses of instance state variables

The Runtime Analysis module of DReaDs maps memory events to definitions and uses
of instance state variables. The module specializes the concept of class state variable
introduced in Definition 2.1 to capture the concrete states of the object instances at
runtime, and adapts the concepts of contextual definition, use and pair accordingly.
In particular, it identifies definitions and uses of instance state variables, that is, defi-
nitions and uses of class state variables specialized distinguishing the object instance
they belong to.

Definition 4.1 (Instance state variable). An instance state variable is a pair
hinstance_id, f ield_chaini, where instance_id is the identity of an object instance
and f ield_chain is a chain of field signatures that navigate the data structure of the
instance up to an attribute declared therein.

Definition 4.2 (Contextual definition (use) of instance state variable). A contextual def-
inition (use) cd (cu) of instance state variable of an object o is a tuple (inst, him1, im2,
..., imni, l) where inst is the instance state variable of o, l is the location of the ac-
tual instruction that modifies (references) the nested state of o, and him1, im2, ..., imni
is an execution trace where im1 is the call site of the first method call leading to a
modification (read) of the state of o, and imn is the method containing l.

Definition 4.3 (Contextual definition use pairs of instance state variable). A contextual
definition use association for an instance state variable inst is a pair (cd, cu) that asso-
ciates a contextual definition cd of inst, with a contextual use cu of inst, which occur
on the same objects instances and have at least one def-clear paths between them.

Definitions and uses of instance state variables are identified by DReaDs over the
memory model described in the previous section. To this end, this module of DReaDs
monitors the memory events at runtime, and for each event uses the model to compute
the instance state variables that were impacted by that event.

The lookup of the model works as following: When a memory event occurs on
an object o, DReaDs identifies the node n in the memory model corresponding to o,
according the the identity of o. Then, starting from this node, it traverses the graph in
a depth-first fashion to identify all the nodes n0, ..., nk that are directly or indirectly
connected to n, and that represent all the objects o0, ..., ok that own a reference to the
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object o. Each path from a node ni to n, for i = 0..k, identifies a state variable that
corresponds to an object oi that includes o as part of its state. Since the memory model
can contain cycles, DReaDs excludes paths that traverses the same edge multiple times.
For instance, in the memory model shown in Figure 4.2, the path from Z#00 to B#03
identifies the instance state variable hZ#00,Z.a.bi that represents the inclusion of the
object B#03 in the state of the object Z#00.

DReaDs maps definition and use memory events to definitions and uses of instance
state variables, respectively. Definition events correspond to changes of the internal
state of an object, triggered by the assignment of a field (memory store events that
assign a primitive value or set a reference). Use events correspond to accesses to the
value of state variables in program statements, that is, memory load events that read a
primitive value or retrieve a reference. Moreover, DReaDs records the execution trace
at runtime to identify the context of methods invocations of definitions and uses.

For example, in Listing 4.2 the test t at line 8 instantiates a new object Z (with
the instruction Zz=newZ(a1)), consequently executing the constructor of Z (lines 3–5
of Listing 4.1). When executing the assignment this.a=a at line 4 in the constructor
of Z, DReaDs creates the node Z#00, and the edge a in the model in Figure 4.2, and
identifies the assignment as a definition event. Thus, after updating the model, DReaDs
navigates the graph, and identifies the occurrence of the direct definition of the in-
stance state variable hZ#00,Z.ai, and of the nested definition of the state variable
hZ#00,Z.a.bi, with context Z#00.<init>. In the same way, executing the instruction
z.doSmt() at line 9 of t, triggers a use event on B#03 and leads to the identification
of the use of the class state variables hA#01,A.bi, hA#02,A.bi and hZ#00,Z.a.bi with
context Z#00.doSmt()! A#01.getB().

Tracking active definitions, reachable uses and executed pairs

The Runtime Analysis module is also responsible for tracking active definitions, reachable
uses and executed pairs of instance state variables. The module incrementally updates
three sets of information: the Active Defs (ADefs) set of active definitions, the Reach-
able Uses (RUses) set of reachable uses, and the Executed Pairs (EPairs) set of executed
definition use pairs.

Active Definitions (ADe f s[i]) The set ADe f s[i] of active definition is the set of all
the definitions of instance state variables that are active in an instant i of the
execution, that is, that reached the current basic block. Every time DReaDs detects
a new definition, it adds it to the set of active definitions. If the set of active
definitions already contains a definition on the same instance variable, the old
definition is removed from the set (killed) an replaced with the new one.

The ADe f s set is populated performing reaching definitions analysis over a single
execution trace: ADe f s[i] = ADe f s[i�1]\KI LL[i][GEN[i], where ADe f s[i�1]
are the definitions that were active in the previous instant of the execution, and
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GEN and KI LL denote the sets of definitions that start and stop propagating in
the current instant i. This equation is a specialisation over a single execution
trace of the classic reaching definitions analysis equations, Equations 2.1 and
Equations 2.2, discussed in Chapter 2.1.

Reachable Uses (RUses[i]) The set RUses[i] of reachable uses contains the uses that
are reachable in the instant i from the basic block entry. Every use that is not
preceded, in the same block, by a definition on the same state variable is reachable
and therefore added to the set. The set is reset at the exit of the block.

Executed Pairs (EPairs[i]) The set EPairs[i] of executed definition use pairs contains
the observed definition use pairs up to an instant i of the execution. Every time
an use is added to the RUses[i] set, it is matched with the active definitions in
ADe f s[i] on the instance state variable to identify which pair was executed. This
set is initialised at empty at the beginning of the execution of a test case, and
reset at the end of the execution of each test case.

These sets are used by the next module of DReaDs to compute reaching definitions
and reachable uses information for the program under analysis, and to register the
executed definition use pairs.

4.5 DReaDs Generalization Across Traces

This module of DReaDs is responsible for generalising the information observed on
the single object instances and on the different execution traces to compute reaching
definitions and reachable uses information of class state variables.

In particular, after each execution step, DReaDs exploits the information computed
with the previous module about active definitions and reachable uses of instance state
variables, to update reaching definitions and observable uses of class state variables
for the current basic block, and to track which pairs have been observed (Algorithm 1,
line 10).

To this end, DReaDs (i) abstracts class state variables information from instance
state variables information computed at runtime (ii) updates reaching definitions for
the current basic block, (iii) updates observable uses for the current basic block, and
(iv) updates executed definition use pairs information of the current execution.

Abstracting Class State Variables Information

In this step of the analysis DReaDs abstracts information on class state variables from
information on instance state variables, that is, it combines the information observed
on different instances of the same class and of different traces in single reports.

Abstracting a definition (use) of a class state variable from a definition (use) of
an instance state variable consists of substituting the instance_id of the instance with
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the class_id of the type of the instance, as observed dynamically. DReaDs abstract
information on class state variables every time it enters and exits basic blocks.

This module updates three sets of information: Generalized Active Defs (GADefs),
Generalized Reachable Uses (GRUses) and Generalized Executed Pairs (GEPairs).

The Generalized Active Defs[i] (GADefs[i]) set contains the definitions of class state
variables that reached the entry (exit) point of a basic block b in an instant i. DReaDs
updates GADe f s[i] by abstracting active definitions of class state variables information
from the set ADe f s[i] of active definitions of instance state variables whenever it enters
and exits a basic block b at an instant i.

The Generalized Reachable Uses[j] (GRUses[j]) set contains the uses of class state
variables that were observed be reachable from the entry point of b in the instant j,
and it is updated by abstracting reachable uses of class state variables information from
the set RUses[ j] of reachable uses of instance state variables.

At the end of the execution of each test case t, DReaDs populate the set Generalized
Executed Pairs[t] (GEPairs[t]) by abstracting executed definition use pairs information
of class state variables information from the set GEPairs[i] of executed pairs of instance
state variables.

Dynamic Reaching Definitions Analysis

DReaDs maintains at runtime the sets ReachIn[b] and ReachOut[b] of reaching def-
initions that enter and exit a basic block b, for each basic block of the classes under
analysis. DReaDs rewrites the classic data flow equations of static reaching definitions
analysis to exploit dynamically computed information.

When DReaDs enters in a basic block b in a specific instant i of the execution, DReaDs
updates the set ReachIn[b] by adding the definitions in GADe f s[i] to the set, according
to the Equation 4.1:

ReachIn[b] = ReachIn[b][ GADe f s[i] (4.1)

Similarly, when DReaDs exit a basic block b in a instant j > i, it updates ReachOut
using the Equation 4.2:

ReachOut[b] = ReachOut[b][ GADe f s[ j] (4.2)

DReaDs initializes the sets ReachIn[b] and ReachOut[b] as empty sets at the be-
ginning of the execution, and updates the sets during the execution of the test cases.
At the end of the DReaDs analysis, the sets contain the reaching definitions that were
observed in any instance of an object and in any execution trace of the program.

Dynamic Reachable Uses Analysis

Dynamic reachable uses analysis works similarly to dynamic reaching definitions anal-
ysis. For each basic block b, DReaDs computes the set ReachUses[b] that includes the
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uses of class state variables that have been observed in any block and in any execution
trace.

When DReaDs exits a basic block b, it updates the set ReachUses[b] adding the uses
of GRUses[i] to the set:

ReachUses[b] = ReachUses[b][ GRUses[i] (4.3)

DReaDs initializes the ReachUses set is initialised as empty sets at the beginning of the
execution, and updates them during the execution of the test cases.

Executed Definition Use Pairs Analysis

At the end of the execution of each test case, DReaDs stores the generalised informa-
tion on the executed definition use pairs observed during that execution in the set
ExecutedPairs.

DReaDs updates the ExecutedPairs set at the end of the execution of each test t
using the simple Equation 4.4:

ExecutedPairs = ExecutedPairs [ GEPairs[t] (4.4)

At the end of the execution of the last test case, DReaDs summarizes and reports the
results of the analysis (Algorithm 1, line 13), and produces the sets ReachIn, ReachOut
and ReachUses for each basic block of the classes under analysis, and in the set Exe-
cutedPairs containing all the definition use pairs observed during the execution of the
suite.

4.6 Prototype Implementation

We designed a prototype implementation of the DReaDs technique for the Java pro-
gramming language, which we called JDReaDs.

JDReaDs requires as input a compiled Java program and a driver to execute it, either
in the form of one or multiple classes with a main method, or as a JUnit test suite; and
computes the data flow information collected while executing the program using the
provided driver.

Figure 4.4 shows the logical components of JDReaDs, represented as boxes in the
figure, and its inputs and outputs, represented as parallelograms. JDReaDs contains
two main components, the instrumentation and the runtime analysis component.

The instrumentation component is responsible for instrumenting and executing the
application under analysis, and is implemented relying on the DiSL framework for dy-
namic analysis [MVZ+12]. DiSL takes in input a set of instrumentation rules, and dy-
namically instruments the bytecode of the application according to the provided rules
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Figure 4.4. JDReaDs modules and workflow

while executing it. JDReaDs implements rules for instrumenting the application to trig-
ger a series of events to both track the executed trace, that is, which basic block is
executing, which method is called by a call point, etc, and data flow events, such as
variable assignments, and reads of references.

The runtime analysis component processes the events identified with the instrumen-
tation component at runtime. The runtime analysis component is composed of three
sub-modules that implement the three high-level modules described in Chapter 4 and
reported in Algorithm 1: a module for updating and managing the memory model, a
module for dynamic tracking active definitions and reachable uses, and a module for
abstracting and storing the observed data flow information.

Instrumentation Component

The instrumentation component of JDReaDs is responsible for (i) instrumenting the
application and its execution driver to collect the necessary information for the analysis,
and (ii) executing the (instrumented) application using the provided driver.

JDReaDs instrument the code using the DiSL framework and language that allows
to specify instrumentation code as snippets, that is, code templates instantiated for
each selected instrumentation site, and offers a series of markers and guards to spec-
ify the instrumentation points and scope. DiSL also provides helper classes to retrieve
different information on the execution, such as line number, name of a field, etc, and
a mechanism for passing information between snippets through the definition of syn-
thetic variables.

We exploit these functionalities of DiSL to insert calls to an event handler class in
different points of the original program and of its driver. We exploited DiSL markers to
select the instrumentation points, the guards to limit the instrumentation to the classes
of our interest, and the synthetic variables to collect detailed information on the objects
that are de-referenced by an assignment, to properly register definition kills.
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Listing 4.3. Instrumentation rules for tracking putfield bytecode instructions
1 @SyntheticLocal static Object owner;
2 @SyntheticLocal static Object oldVal;
3 @SyntheticLocal static Object newVal;
4
5 / PUTFIELD /
6 @Before(marker = BytecodeMarker.class, args = "putfield", guard = PutGuard.class,
7 scope = Properties.SCOPE, order = 100)
8 public static void beforePutField(LineNumberStaticContext lnsc, FieldStaticContext fsc ,
9 MethodStaticContext msc, DynamicContext dc) {

10 owner = dc.getStackValue(1, Object.class);
11 oldVal = dc.getInstanceFieldValue(owner, fsc.getFieldOwner(), fsc.getFieldName(), ...) ;
12 newVal = dc.getStackValue(0, Object.class);
13 }
14
15 @AfterReturning(marker = BytecodeMarker.class, args = "putfield", guard = PutGuard.class,
16 scope = Properties.SCOPE, order = 100)
17 public static void afterRetPutField(LineNumberStaticContext lnsc, FieldStaticContext fsc ,
18 MethodStaticContext msc, DynamicContext dc) {
19 EventHandler.instanceOf().onInstanceFieldPut(lnsc.getPrevLineNumber(),
20 dc.getThis(), fsc .getFieldOwner(), fsc.getFieldDesc(), fsc .getFieldName(),
21 owner, oldVal, newVal, fsc . isArray() , fsc . isPrimitive ()
22 );
23 }

Listing 4.3 reports an example of code that contains the instrumentation rules for
tracking the assignments of class fields. These rules insert instrumentation code before
and after each putfield bytecode instruction, which is the bytecode instruction that
assigns values to a field. Before each putfield (snippet beforePutField(...)) we
retrieve the objects involved in the assignment, the field owner, the old value and the
new value that will be assigned to the field, and we store them in a synthetic local
variable. After each putfield then (snippet afterRetPutField(...)), we trigger the
event on the event handler, communicating to the handler different information on the
execution, such as the line of code, the field static name and type, and the concrete
objects involved in the assignment that we stored in the synthetic variables.

The instrumentation of other instructions related to the control and data flow of the
application under analysis is handled similarly. Table 4.1 reports all the instrumentation
points of JDReaDs, together with a short description.

Runtime Analysis Component

The runtime analysis component is composed of three sub-modules that implement
the three high-level modules described in Chapter 4: Memory Model Builder, Dynamic
Analyzer, and Data Flow Information Abstractor modules illustrated in Figure 4.4.

The modules react to the events triggered when executing the (instrumented) appli-
cation, and process the events following the order described in Algorithm 1: Firstly the
Memory Model Builder updates the memory model, then the Dynamic Analyzer updates
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Table 4.1. Instrumentation rules of JDReaDs

Instrumentation Rule Description

Before putfield before and after each putfield instruction, intercepts assign-
ments of fieldsAfter putfield

Before getfield before and after each getfield instruction, intercepts accesses to
field referencesAfter getfield

Before arrayload before and after each arrayload instruction, intercepts accesses
to array elements, distinguishing the indexAfter arrayload

Before arraystore before and after each arraystore instruction, intercepts assign-
ments of array elements, distinguishing the indexAfter arraystore

On Basic Block Entry before and after each basic block entry and exit, intercepts the
current basic block.On Basic Block Exit

On Test Entry
before and after each test method entry and exit, and before each
test line. Intercepts the entry point of the execution.

On Test Exit
Before Each Test Line

the information on active definitions and reachable uses of instance state variables, and
finally the Data Flow Information Abstractor generalizes the information on instances
to classes, and updates the reaching definitions and reachable uses set for the current
basic block.

The Memory Model Builder represents the memory model as a graph, and updates
it lazily whenever a field or an array cell is referenced. To this end, it processes every
putfield and arraystore event, updating the model according. The Memory Model
Builder exposes utility methods to navigate the graph. These methods returns for each
edge, all the nodes that were impacted by the modification of the edge, exploiting a
cache mechanism to limit searches over the graph and improve the performances.

The Dynamic Analyzer module processes putfield, getfield, arrayload, array-
store, basic blocks, and test cases events. It queries the model to retrieve all the nodes
impacted by a definition or use event, identifies the corresponding instance state vari-
ables, and updates a map of active definitions, reachable uses and executed pairs fol-
lowing the logic described in Section 4.4. The Dynamic Analyzer module computes the
context of contextual definitions and uses by recording information on the execution
trace of the application as the sequence of traversed basic blocks. The Dynamic An-
alyzer module associates each identified definition and use with the execution driver
statement which generated it, for debugging and manual analysis purpose.

The Data Flow Information Abstractor module incrementally collects and stores the
generalized data flow information for each traversed basic block. It processes basic
block events: whenever the execution enters or exits a basic block, this module ab-
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stracts the information of the active definitions and reachable uses made available by
the previous module, and updates the reaching definitions and the reachable uses sets
instantiated for each basic block according to the logic discussed in Section 4.5. This
module reduces the memory consumption by indexing definitions and uses in a global
cache, and using bit vectors over the cached indices to efficiently represent the sets of
reaching definitions and reachable uses associated with the blocks. The module up-
dates a set of generalized executed definition use pairs of class state variables. At the
end of the executions, this module serializes the computed information in a final report.

JDReaDs works on every program written in Java up to version 1.7, but it currently
does not guarantee sound results under certain circumstances: the JDReaDs implemen-
tation used in this thesis does not handle object cloning, field access via reflection, and
unsafe field access. It also has a limited support to multi-threading.



56 Dynamic Data Flow Analysis



Chapter 5

Static vs Dynamic Data Flow
Analysis

This chapter investigates the hypothesis that data flow techniques used
so far in data flow testing miss many relevant test objectives that derive from
data flow relations entailed by a program. To this end, we compare the data
flow relations computed with static data flow approaches with the ones ob-
served while executing the program, for a set of open-source object-oriented
programs. The experimental data discussed in the chapter show that data
flow testing based on under-approximated static data flow analysis misses
many data flow test objectives, and indicate that the amount of feasible but
missed data flow test objectives is an obstacle stronger than of infeasible but
detected data flow relations to the effectiveness of data flow testing.

In Chapter 3 we hypothesises that the data flow analyses that under-approximate
the dynamic behavior of the application, commonly exploited in data flow testing so
far, miss many data flow abstractions relevant to testing, thus compromising the effec-
tiveness of the technique.

This chapter presents the results of an experimental evaluation of such hypothesis:
We compared the set of data flow relations statically identified with an inter procedural
data flow analysis with the data flow elements observed at runtime while executing the
program, to estimate the amount of feasible data flow elements that are observed but
not statically identified. We experimented with JDReaDs, a prototype implementation
of the Dynamic Data Flow Analysis technique.

The experimental data discussed in the chapter indicate that (i) the current data
flow testing approaches based on under-approximated static analyses miss many data
flow test objectives, and that (ii) the amount of missing objectives limits the effective-
ness of data flow testing more than the amount of the statically identified infeasible
data flow relations. These results grounded our idea of defining new data flow testing
approaches based on dynamically computed data flow information.

57
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Section 5.1 reports the research questions of the study presented in this chapter.
Section 5.2 discusses the motivations and rationale of the experiments. Section 5.3
presents the design of the experiments. Section 5.4 analyzes the results. Section 5.5
discusses our findings. Section 5.6 reports the threats to the validity of the study.

5.1 Research Questions

The study addresses two main research questions.
The first research question is about the ability of an under-approximated static data

flow analysis to identify a relevant set of data flow relations:

RQ1: To what extend does static data flow testing identify a set of data flow relations
that approximates the data flow relations entailed by a class under test?

The second research question focuses on understanding the impact of approxima-
tions over data flow analysis, to understand whether approximations impact more on
the number of infeasible or of missed test objectives.

RQ2: To what extent is the outcome of a static technique affected by false-positive (in-
feasible but detected) or false-negative (feasible but missed) data flow relations?

5.2 Rationale

To investigate the research questions, we should compare the data flow information
statically computed with the set of feasible data flow abstractions in the application,
which requires to identify all the executable data flow abstractions in the code, and
compare them with the data flow abstraction statically computed as illustrated in Fig-
ure 5.1 (a).

Computing the set of feasible data flow abstractions is undecidable in general, and
too expensive to be feasible for non-trivial programs. In our experiment, we approxi-
mate the set of feasible data flow abstractions with the set of data flow elements that
are dynamically observed with JDReaDs while executing the application. To maximize
the information dynamically observed, and obtain a good approximation of the set of
feasible data flow abstractions, we execute JDReaDs with thorough test suites generated
both manually and automatically.

We compared the information that we derived statically and dynamically, and com-
puted the three sets of information that are shown in in Figure 5.1 (b): the sets of
observed and (statically) missed, observed and (statically) detected and of never ob-
served but (statically) detected elements. We use these sets to estimate the limitations
of static analyses in dealing with the dynamic constructs of languages. The amount
of observed and missed elements compared to the amount of observed and detected
ones would illustrate the suitability of under-approximated static data flow analysis to
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(a) Relation between the data flow abstractions identified with a static under-
approximated data flow analysis, and the feasible data flow abstractions.

Feasible Data Flow 
AbstractionsUnder-Approximated 

Static Analysis

Infeasible Data Flow Abstractions

Never observed 
but detected

?
Observed but 

missed

?
Observed 

and detected

?

Observed Data Flow 
Abstractions

(b) Relation between the data flow abstractions identified with a static under-
approximated data flow analysis, and the data flow abstractions observed while exe-
cuting the program.

Figure 5.1. Relation between the data flow abstractions identified with a static under-
approximated data flow analysis, the observable data flow abstractions, and the feasi-
ble data flow abstractions.

approximate the set of feasible data flow elements. The amount of never observed but
detected elements would indicate the impact of infeasible elements of these analyses
on the data-flow testing techniques.

5.3 Experimental Settings

The main independent variable of the study is the technique applied to identify the data
flow relations of the sample classes, that is either the static data flow analysis, or the
dynamic mechanism JDReaDs that computes data flow information at runtime. The de-
pended variable of each observation is the sets of data flow relations both statically and
dynamically identified for a class under analysis. Other sources of variability include
the classes and the test cases used in the experiments.
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In the study, we instantiate the static data flow approach with DaTeC, a consolidated
tool for data flow testing of object-oriented software that has been used in existing work
in literature [DGP08, DGP09, DPV13]. DaTeC embodies an inter-procedural reaching
definition analysis, and computes contextual data flow information that comply with
the definition gave in Section 2.2.2. DaTeC computes test objectives for intra and inter-
class testing for Java programs, and its original implementation does not include any
form of alias analysis to resolve polymorphic types and reference aliasing. To the best of
our knowledge, we are not aware of other publicly available tools for inter-procedural
data flow analysis that compute contextual data flow information of object-oriented
programs.

We compared the information computed using DaTeC with the data flow informa-
tion observed at runtime using JDReaDs.

In the study, we focus data flow information relevant for inter-class testing, which
corresponds to the set of contextual definitions of class fields that are (may be) executed
within a class method, and (may) reach the exit of that method. Both JDReaDs and
DaTeC compute this information as part of the respective reaching definition analyses.
Hereafter we refer to these particular sets of reaching definitions as the defs@exit of
a class method. We measure the defs@exit for a class by aggregating the defs@exit

measured for the methods of the class.
We evaluated the precision of static analysis by comparing the defs@exit com-

puted with DaTeC with the defs@exit observed at runtime with JDReaDs. Two def-
initions computed with DaTeC and observed at runtime are the same if they denote
an assignment of the same variable made at the same code location through the same
chain of methods invocations (context). We implemented some conservative choices
in our strategy to obtain a fair comparison. When matching the static and dynamically
computed definitions in chains of method invocations, we implement the most aggres-
sive matching between polymorphic types, whose signatures are identified by DaTeC
and JDReaDs as the type declared in the code or the type of the instance observed at
runtime, respectively. For instance, we consider that a method that the static analysis
identifies as belonging to an abstract class, as belonging to the concrete type that is
executed at runtime by the dynamic analysis, since abstract types are not instantiated
at runtime. To avoid mismatching, the types observed at runtime match any compati-
ble type statically identified by DaTeC. Moreover, DaTeC considers the access to a single
element of an array as a general access to the array structure. Although at runtime
we could distinguish definitions and uses of individual slots of arrays, this feature was
disabled in JDReaDs to compute a fair comparison.

Table 5.1 lists the characteristics of the Java applications and the test suites that we
considered in the study. We considered five open source applications (column Applica-
tion), which range between 3,000 and 55,000 executable lines of code (column Eloc),
and result to a sample of 1,531 classes (column #Classes) that we regard as a statisti-
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Table 5.1. Subject applications

Application Eloc #Classes #Tests Coverage⇤

Jfreechart 55k 619 26484 0.93
Collections 13k 444 20604 1.00
Lang 11k 150 3254 1.00
Jtopas 3k 63 1562 0.98
JgraphT 6k 255 1009 1.00

88k 1531 52913

⇤ Median value of Eloc coverage per class, computed with Cobertura

cally significant number of observations.
We computed the sets of defs@exit observed at runtime by executing the subject

applications with sample test suites. Since our goal is to stress the possible limita-
tions of the static technique, we tried to maximize the number of the data flow re-
lations observed dynamically by synthesizing thorough test suites that we obtained
by augmenting the test cases bundled with the subject applications with automati-
cally generated test cases. We generated test cases with Randoop [PLEB07] and EVO-
SUITE [FA11a, FA13], configuring them with time limits of 120 seconds per application
and 180 seconds per class, respectively. In EVOSUITE we used the branch fitness func-
tion. In Randoop we set a maximum length of 300 lines of code per generated test
case.

These test suites produce high statement and branch coverage, as shown in Ta-
ble 5.1 that reports the cumulative number of bundled and generated test cases that
we ran for each subject application (column Tests), and the median value of the cover-
age rates (column Coverage) that indicates that the test suites cover a large portion of
the classes.

To account for the variability associated with the random-nature of the techniques,
Randoop and EVOSUITE were run several times.

5.4 Experimental Results

Table 5.2 reports the total number of defs@exit computed by DaTeC and JDReaDs
respectively (columns Total), and their distribution across the classes considered in our
study (columns Q1 = lower quartile, Median and Q3 = upper quartile).

The data show that at runtime it was possible to observe about an order of magni-
tude more defs@exit relations than the ones statically identified with DaTeC, and on
average up to 6 times more defs@exit than DaTeC per class. The data vary across the
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Table 5.2. Amount of identified defs@exit with DaTeC and JDReaDs

dDT : defs@exit with DaTeC dOB: defs@exit with JDReaDs

Application Total Q1 Median Q3 Total Q1 Median Q3

Jfreechart 20,513 2 9 38 89,415 3 18 75
Collections 3,908 2 4 12 63,460 4 26 81
Lang 1,227 2 3 14 1,638 2 5 13
Jtopas 1,481 3 12 16 8,380 6 39 320
JgraphT 1,800 2 4 16 6,602 1 7 44

28,929 2 6 18 169,495 3 17 68

projects: Collections registers the larger differences, while the numbers on Lang are
similar. The data on the distribution per class show that JDReaDs identifies at least 3
times more defs@exit than DaTeC on the majority of the classes.

Using the approach described in the previous section, we quantified the amount
of data flow relations that were distinctively identified by either technique. Table 5.3
reports the amount of defs@exit relations that DaTeC identified statically but have
not been observed dynamically (column never observed) and the amount of defs@exit
data flow relations that JDReaDs revealed dynamically DaTeC did not compute statically
(column statically missed).

The data indicate that the imprecision of static techniques is dominated by the stat-
ically missed relations (false negatives) over the never observed relations (potential
false positives): The data reported in the table indicate that static data flow analysis
misses about 96% of the dynamically observed relations, while identifies about 23% of
relations that are not exercised by the test cases.

The last two columns of the table further refine the data about the statically missed
relations, by showing the amount of data flow information that is statically missed
due to polymorphic references (column impacted by polymorphism), and handling of
arrays (column impacted by arrays). The data indicate that the impact of polymorphic
reference (67% in average) largely dominate over the impact of array handling (12%
in average).

To characterize in further detail our estimations of the relative impact of the false
positives and false negatives on the data flow testing of the classes, we inspected the
data for each class. Figure 5.2 plots the distribution of the amount of data flow relations
that are missed and observed either statically or dynamically across the classes in our
sample. Figure 5.2-a indicates the amounts of data flow relations identified dynamically
but not statically (statically missed), the ones identified statically but not dynamically
(never observed), all the ones observed dynamically and all the ones identified statically;
Figure 5.2-b plots the proportions of the statically missed relations over all the observed



5.5 Discussion 63

Table 5.3. Difference sets of defs@exit identified with DaTeC and JDReaDs

Never observed Statically missed Impacted by Impacted by
Application #(2 dDT^ /2 dDR) #(2 dDR^ /2 dDT ) polymorphism arrays

Jfreechart 3,480 (17%) 85,079 (95%) 47,968 (54%) 11,900 (13%)
Collections 1,779 (46%) 62,169 (98%) 55,295 (87%) 5,580 (9%)
Lang 409 (33%) 1,122 (69%) 605 (37%) 1 (0%)
Jtopas 600 (41%) 8,026 (96%) 5,085 (61%) 2,018 (24%)
JgraphT 505 (28%) 6,080 (92%) 5,259 (80%) 35 (1%)

6,773 (23%) 162,476 (96%) 114,212 (67%) 19,534 (12%)

ones, and of the never observed relations over all the statically identified ones. We
observe that the static technique misses a very large amount (between the 56% and the
99%) of the relations that we observed at runtime for the large majority of the classes
(Figure 5.2-b), while only a small portion of the statically identified relations remain
unseen after executing the test cases. The distributions of the figures at the numerators
of those proportions (Figure 5.2-a) indicate that there are at most 3 never observed
relations per-class across the three fourths of the sample, and that DaTeC misses up to
60 defs@exit per-class in the three fourths of the classes with fewer missed relations.

With Student’s t-test, we found statistically significant support for the (alternative)
hypotheses that the number of statically missed relations exceeds by a factor of 2.4
the number of occurring relations that are also statically identified (pi = 0.0293), and
exceeds by a factor of 4.2 the number of statically identified relations that are never
observed (pi = 0.0468) across the classes in our sample.

We executed the experiments on a OSX 10.7 MacBook Pro with 2.2 GHz Intel Core
i7 and 8GB of RAM memory. We did not plan precise measures of the execution time,
since they are not relevant to our experiment.

5.5 Discussion

With respect to the first research question RQ1, the results of the study indicate that
an under-approximated static data flow analysis badly approximates the set of feasi-
ble data flow relations entailed by a program: The empirical data indicate that the
set of data flow relations that can be statically identified by an analysis that under-
approximate dynamic binding to gain scalability is largely incomplete.

This confirms our hypothesis on the limits of static data flow techniques to identify
test targets relative to actual data flow relations, and suggests that to improve data flow
testing it is necessary to handle the huge amount of data flow relations that hide when
using the static techniques. In other words, if we base data flow testing on a static data
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Figure 5.2. Distributions of the statically missed over the dynamically observed
defs@exit, and of the never observed over the statically identified defs@exit

flow technique which under approximate the dynamic behavior of software, we must
be aware that we may miss a considerable amount of data flow relations that shall be
accounted as test objectives.

With reference to the second research question about the impact of false-positive
and false-negative relations (RQ2), this study indicates that the false negatives (stat-
ically missed feasible data flow relations) weight much more than the false positives
(statically identified infeasible data flow relations) on the imprecision of the static data
flow techniques.

The results question what has been suggested in literature so far, which infeasibil-
ity is the main source of problems for data flow testing. On the contrary, they indicate
that the problem of handling missed information that depends on complex character-
istics of languages, difficult to manage using static analysis, is of primary importance
to improve data flow testing. This is counterintuitive with respect to what happens
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with other structural criteria, like branch coverage, where the static coverage domain
is an over-approximation of the possible test objectives, and therefore the challenge is
to investigate the reachability of the not yet covered elements.

The results of this experiment ground the idea that the set of data flow relations
identifiable with Dynamic Data Flow Analysis largely extends the data flow information
that can be identified statically, and that Dynamic Data Flow Analysis can be use to
complement the static approaches in the context of a data flow testing technique to
identify more relevant test objectives. These findings also imply that the inconclusive
results about data flow testing effectiveness discussed in literature refer to a set of data
flow relations identified statically that do not represent the many data flow relations
that occur in object-oriented programs. Finding a better way to identify the possible
data flow relations in object-oriented programs opens the way to new results about the
mutual effectiveness of data flow and structural testing criteria.

5.6 Threats to Validity

We are aware of threats to the internal, construct and external validity of our study. The
internal validity can be threatened by a scarce control on factors that may influence the
results. The construct validity requires that the operational implementation of the vari-
ables properly captures the intended theoretical concepts, and that the measurements
are reliable. The external validity relates the generalizability of the findings.

The main internal threat in this study relies in the difficulty of measuring the con-
sistency of our results across different implementations of static data flow techniques.
In our study, we refer to the technique embodied in DaTeC that implements a mature
and consolidated approach to data flow testing of object-oriented programs consistent
with the approaches proposed in the main recent studies on this topic. We already com-
mented on the range of design choices that can underlie the implementation of a static
data flow technique: As many other static analyzers, DaTeC relies on both conservative
choices, like choices concerning the feasibility of statements, paths or matching array
offsets, and approximations due to the impossibility of accounting for all alias relations,
as needed in particular to precisely solve polymorphic method calls. We are aware that
implementations of the data flow technique different than DaTeC can lead to identify
differently approximated sets of data flow relations. The current unavailability of other
tools for inter-procedural data flow analysis of object-oriented programs inhibited us
from extending our observations beyond DaTeC.

Another important internal threat to validity refers to how well defs@exit reaching
definitions appropriately represent the objectives of data flow class testing. Classic data
flow class testing addresses the interactions (def-use relations) between the methods of
a class that can define and use the same class state variables, when invoked sequentially
in a test case [HR94]. We observe that identifying the defs@exit reaching definitions
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is a pre-requisite for a static technique to identify the def-use relations, since only the
definitions that reach the method exit may propagate to uses in other methods. Thus,
the set of defs@exit reaching definitions characterizes well the ability of identifying
def-use interactions. Measuring directly the def-use interactions would lead to fewer
interpretable results in our study. The reason is twofold. First, since DaTeC computes
the def-use relations by pairing the defs@exit reaching definitions and the reachable
uses of the methods, after computing either information separately, the imprecisions
of the data flow analysis would be reflected with combinatorial confounding effects in
the measurements of the def-use relations. Second, the def-use relations predicate on
the combined execution of pairs of methods, and this increases the dependence of the
dynamic data on the test suites, an effect that our study aims to minimize.

A threat to the construct validity refers to the dependency of the data flow relations
that we observed dynamically in our study on the test cases. We have executed all the
test cases bundled with the subject applications augmented with test cases generated
with the most popular open source automatic test case generators. There is no indi-
cation that the bundled test cases have been built with data flow testing in mind, and
neither the random nor the search-based tools used in the experiment address data flow
criteria directly. Thus, we cannot exclude that our set of dynamic observations could
be incomplete. However, because the study reveals a huge disproportion between the
amounts of statically identified and dynamically observed data flow relations, we are
confident that further (currently missed) dynamic observations would not significantly
alter the current results.

Another important threat to the construct validity refers to the reliability of our
measurements that depend on the reliability of the data computed with DaTeC and
JDReaDs. We extensively tested and used DaTeC over the last years. We developed
JDReaDs for this experiment, and we have tested it by manually inspecting the outcome
produced on a sample of the classes considered in this experiment. JDReaDs however
does not properly handle multi-threading and Java reflection. Therefore, we excluded
classes that relies on those constructs from the experiment. An extension of JDReaDs to
properly handle these constructs will likely further increase the precision gap between
the two approaches, since also DaTeC does not implement any specific strategy for
reasoning on threads, and does not handle Java reflection.

The main threat to the external validity concerns the limits of our subjects that in-
clude only open-source applications. Thus, we shall restrict the scope of our conclusions
to open-source software. In general, we are aware that the results of a single scientific
experiment cannot be directly generalized.



Chapter 6

Dynamic Data Flow Testing

In this section we introduce Dynamic Data Flow Testing, a new technique
for automatically generating test cases to properly exercise the state based
behavior of object-oriented systems captured with data flow relations. The
technique promotes the synergies between dynamic analysis, static reasoning
and test case generation. Dynamic Data Flow Testing relies on Dynamic Data
Flow Analysis to compute precise data flow information for the program under
test. It statically processes the dynamically computed data flow information
to infer yet-to-be-executed test objectives that it uses to generate new test cases.
Thanks to Dynamic Data Flow Analysis, Dynamic Data Flow Testing suffers
less from the problems of current static data flow testing approaches, being
able to both identify definition use pairs that depend on the dynamic behavior
of the application, and limit the impact of infeasible elements.

This chapter presents Dynamic Data Flow Testing, a structural testing technique to
automatically generate test cases for software systems characterised by a stateful be-
havior and a high degree of dynamism, such as object-oriented systems.

The technique builds on the rationale of classic data flow testing, following the idea
that definition use pairs capture the state based interactions between objects. However,
Dynamic Data Flow Testing does not follow the typical data flow testing framework that
employs a static analysis to detect test objectives, but exploits dynamic analysis for
steering the test generation process.

Dynamic Data Flow Testing exploits the dynamic data flow information computed
on an initial set of test cases to infer new data flow relations and consequently new test
objectives. Being inferred on dynamically computed data, the new data flow relations
both include important information on the execution state that cannot be captured stat-
ically, and suffer less from the infeasibility problem than the data flow relations com-
puted with static analysis. We iteratively generate test cases until we cannot identify
new test objectives to be exercised.

The test cases obtained using Dynamic Data Flow Testing exercise the complex state
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based behavior of object-oriented systems, which may not be well exercised while using
other structural testing approaches.

The chapter is organised as following: Section 6.1 introduces the guiding principle
in the design of Dynamic Data Flow Testing. Section 6.2 describes the workflow and
the architecture of Dynamic Data Flow Testing, which is composed of a component that
deploys DReaDs to perform dynamic data flow analysis (Section 6.3), a component that
infers test objectives from the information computed dynamically (Section 6.4) and a
component that generates test cases that satisfy the identified objectives (Section 6.5).

6.1 Objectives

Data flow testing techniques are well suited for testing object-oriented systems. By
using inter-procedural data flow abstractions as test objectives, such as contextual def-
inition use pairs of class state variables, data flow testing approaches select test cases
that can exercise the state based behavior of classes, properly capturing the data de-
pendencies between objects and methods [MOP02, SP03, DGP08].

The applicability and effectiveness of data flow testing is challenged by the impre-
cision of the static analysis used to identify the test objectives, that has a potentially
huge impact on the success of a data flow testing approach, as discussed in Chapter 5.

In this chapter, we propose Dynamic Data Flow Testing, an original technique that
re-thinks classic data flow testing to increase both its effectiveness and applicability.

The core idea of Dynamic Data Flow Testing is to overcome the problem of the im-
precision of static analysis by using Dynamic Data Flow Analysis, which computes sound
data flow information that better approximates the set of feasible data flow abstractions
of the program, without under-approximating the dynamic and complex behavior of the
application. Dynamically computed data flow information identifies the dependencies
between objects that derive from the interplay between the static structure of the pro-
gram and the dynamic evolution of the system, which are typically missed by static
analysis, and that identify complex software behavior that can contain subtle failures
and thus is important to be tested.

To identify new test objectives from information computed dynamically, Dynamic
Data Flow Testing combines data flow information observed on different object instances
and execution traces. In particular, Dynamic Data Flow Testing infers yet-to-be-executed
definition use pairs by statically pairing definition and uses dynamically computed on
different execution traces and on different instances of the same class. The definition
use pairs identified in this way are computed on dynamically produced information,
which guarantees the feasibility of the definitions and uses in the pairs. Thus, the newly
inferred pairs suffer only from the infeasibility of the pair, but not of the constituting
elements, reducing the infeasibility problem that affects static approaches.

Dynamic Data Flow Testing automatically generate test cases that satisfy the identi-
fied data flow relations. By providing an automated strategy to data flow test genera-
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Algorithm 2 Dynamic Data Flow Testing(Program, TestSuite)
Require: Program: The program under test
Require: TestSuite: A test suite for the program under test
1: DynamicDFInfo = EMPTY
2: TestObjectives = EMPTY
3: NewTestCases = EMPTY
4: repeat
5: TestSuite = addNewTests(TestSuite, NewTestCases)
6: DynamicDFInfo = executeDReaDs(Program, TestSuite) . section 4.3
7: TestObjectives = inferPairs(DynamicDFInfo) . section 4.3
8: NewTestCases = generateTests(TestObjectives) . section 4.3
9: until ¬isEmpty(NewTestCases) ^ hasExecutionBudget()

10: return TestSuite

tion, Dynamic Data Flow Testing provides a solution to the problem of the complexity
of generating test cases that satisfy data flow abstractions.

Finally, Dynamic Data Flow Testing defines a new approach to structural testing.
Instead of computing the universe of test objectives upfront and then trying to satisfy
them all, it incrementally discovers the interesting test objectives while generating test
cases that satisfy them. The technique exploits the dynamic data flow information
computed on an initial set of test cases to infer new test objectives, which are targeted
by a test generator to produce new test cases. These new test cases are added to the
pool of existing tests, and are iteratively analyzed with Dynamic Data Flow Analysis.

6.2 The Iterative Dynamic Data Flow Testing Approach

Dynamic Data Flow Testing exploits the synergies between dynamic analysis, static anal-
ysis and test case generation. The technique works iteratively, alternating dynamic
analysis, static reasoning and test case generation to improve an original test suite with
new test cases that execute dynamically computed data flow abstractions.

Algorithm 2 and Figure 6.1 introduce the workflow and the architecture of Dynamic
Data Flow Testing. Dynamic Data Flow Testing includes three main steps: Dynamic Data
Flow Analysis, Test Objectives Inference Analysis and Test Case Generation, represented
in Figure 6.1 as circles.

Dynamic Data Flow Testing takes as input a program under test and a test suite,
and iteratively executes the three steps (Algorithm 2, line 4). During each iteration,
Dynamic Data Flow Testing augments the original suite with new test cases (line 8), and
terminates after the first iteration that does not augment the test suite.

In each iteration, Dynamic Data Flow Testing executes the three steps, references in
Algorithm 2 as executeDReaDs, inferPairs and generateTests. The Dynamic Data
Flow Analysis step (executeDReaDs, line 6) executes the test cases and analyzes the
execution traces to dynamically compute data flow information on the propagation of



70 Dynamic Data Flow Testing

Dynamic 
Data Flow 

Information

Test 
Objectives

Augmented 
Test Suite

Test 
Objectives 
Inference 
Analysis

Dynamic 
Data Flow 
Analysis

Test Case 
Generator

Initial Test 
Suite

Figure 6.1. Workflow and Components of Dynamic Data Flow Testing

definitions and the reachability of uses (variable DynamicDFInfo, line 6).
The Test Objectives Inference Analysis step (inferPairs, line 7) infers not yet ex-

ecuted definition use pairs from the dynamic data flow information computed so far
(variable TestObjectives, line 7). In particular, Dynamic Data Flow Testing matches
definitions and uses observed on different instances and objects to identify new defini-
tion use pairs to use as test objectives.

The Test Case Generation step (generateTests, line 8) derives a set of test cases
that satisfy the test objectives identified in the second step (variable NewTestCases,
line 8). Dynamic Data Flow Testing adds the new test cases to the initial suite (line 5) to
start a new cycle. The execution traces produced by executing the new test cases pro-
vide new data flow information material, that could lead to new data flow information,
and new test objectives.

Dynamic Data Flow Testing terminates when either Dynamic Data Flow Analysis does
not identify new test objectives and therefore the technique does not generate any new
test case, or the execution budget is over (line 9).

The working mechanism of Dynamic Data Flow Testing can be illustrated through a
brief example on the code reported in Listing 3.4, which we previously used to dis-
cuss the limits of over and under- approximated static data flow analysis in Chapter 3.
Starting with the basic test suite shown in Listing 6.1, Dynamic Data Flow Testing can
incrementally discover all the feasible pairs shown in Table 6.1 and generate test cases
that execute all the identified pairs. The generated test cases leads to the failure of the
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Table 6.1. Feasible definition use pairs of class Cut of Listing 3.4

Pair Variable Def
at

Through call chain Use
at

Through call chain

p1 Cut.v0 2 Cut.<init> 10 Cut.met2
p2 Cut.v0 6 Cut.met1 10 Cut.met2
p3 Cut.lev[L1].v1 29 Cut.met2!L1.doB 26 Cut.met1!L1.doA
p4 Cut.lev[L1].sub1[L2].v2 41 Cut.met1!L1.doA!L2.doA 44 Cut.met2!L1.doB!L2.doB

Table 6.2. Definitions and uses dynamically revealed against the execution of method
sequences

Iteration Executed
Test Case ?

Executed
Pair ⇤

Observed
definitions

Observed uses Inferred
Pair ⇤

Generated
Test Case ?

1
testMet1() Cut.v0 Cut.lev.v1

testMet2() p1 Cut.v0 p2 newTest1()

2 newTest1() p2 Cut.lev.v1 Cut.lev.sub1.v2 p3 newTest2()

3 newTest2() p3 Cut.lev.sub1.v2 p4 newTest3()

4 newTest3() p4

⇤ definition use pairs identified as in Table 6.1.
? test cases reported in Listing 6.1 and Listing 6.2.

assertion at line 11 of the class Cut, exposing a fault.
Table 6.2 summarizes the information produces in each iterations of Dynamic Data

Flow Testing. Each row reports the iteration (column Iteration), the executed test cases
(column Executed Test Case), the new executed pairs in the iteration (column Executed
Pair), the definitions and uses observed on the execution traces (columns Observed def-
initions and Observed uses, respectively), the definition use pairs that can be inferred
based on the observed information so far (column Inferred Pair) and the new test case
generated at the end of the iteration to satisfy the inferred pairs, if any (column Gener-
ated Test Case).

In the first iteration, Dynamic Data Flow Testing executes the existing test suite com-
posed of the test cases testMet1() and testMet2(), reported in Listing 6.1. These test
cases independently invoke the two methods Cut.met1() and Cut.met2() of class Cut
of Listing 3.4.

By analyzing the execution traces of testMet1() and testMet2() with DReaDs,
Dynamic Data Flow Testing identifies that the test testMet1() executes a definition of
variable Cut.v0 and a use of variable Cut.lev.v1, while testMet2() executes the pair
p1 and uses variable Cut.v0 (as reported in the lines Iteration 1 of Table 6.2).

While the definition and the use executed in the first test case does not identify any
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Listing 6.1. Initial Simple Suite for Class Cut of Listing 3.4

1 @Test
2 public void testMet1() {
3 Cut cut = new Cut();
4 cut.met1();
5 }
6

7 @Test
8 public void testMet2() {
9 Cut cut = new Cut();

10 cut.met2();
11 }

Listing 6.2. Test Cases for Class Cut Generated by Dynamic Data Flow Testing

1 //covers p2
2 @Test
3 public void newTest1() {
4 Cut cut = new Cut();
5 cut.met1();
6 cut.met2();
7 }
8
9

10 //covers p3
11 @Test
12 public void newTest2() {
13 Cut cut = new Cut();
14 cut.met1();
15 cut.met2();
16 cut.met1();
17 }
18

19 //covers p4
20 @Test
21 public void newTest2() {
22 Cut cut = new Cut();
23 cut.met1();
24 cut.met2();
25 cut.met1();
26 cut.met2();
27 }

pair, the additional pair executed in the second test reveals a new pair p2 for variable
Cut.v0, which identifies a data dependency between Cut.met1() and Cut.met2().
This pair is identified in the Test Objectives Inference Analysis phase of Dynamic Data
Flow Testing by matching the definition observed in the execution trace of testMet1(),
with the use observed in the trace of testMet2().

In the test generator phase, Dynamic Data Flow Testing generates a new test case
that executes the pair p2, for instance the test newTest1() reported in Listing 6.2,
which subsequently invokes the methods Cut.met1() and Cut.met2() covering the
pair.

The next runs execute the inferred and not-yet-executed pairs incrementally. In
the second step, the new test case newTest1() is added to the set of tests to use for
the analysis, and its execution leads to the identification of a definition on the variable
Cut.lev.v1, which allows the inference of the pair p3 (line Iteration 2 of Table 6.2).
The test case generated to execute pair p3 — the test newTest2(), reported in List-
ing 6.2 — is analyzed in the third iteration, reveals a new definition, and infers the pair
p4, which is covered by the last test case newTest3() (line Iteration 3 of Table 6.2). The
non-trivial combination of method calls executed by newTest3() leads to the failure of
the assertion at line 11 of class Cut, exposing the fault.

Since the last test case does not reveal new definitions or uses to infer new pairs
and generate new tests, the process terminates with the fourth iteration of Dynamic
Data Flow Testing (line Iteration 4 of Table 6.2).



6.3 Dynamic Data Flow Analysis 73

In this case the technique identifies all the feasible and important data flow relations
without false positives, and guides the incremental generation of test cases to find the
failure.

The following sections details the three steps of Dynamic Data Flow Testing. Sec-
tion 6.3 presents how Dynamic Data Flow Analysis is used for the technique, Section 6.4
focuses on the static approach used to compute test objectives, and Section 6.5 discusses
the automated generation of test cases from such goals.

6.3 Dynamic Data Flow Analysis

Dynamic Data Flow Testing exploits the Dynamic Data Flow Analysis (DReaDs) tech-
nique presented in Chapter 4 to compute precise data flow information from which
Dynamic Data Flow Testing infers new test objectives. In the dynamic data flow analysis
phase, Dynamic Data Flow Testing executes the program with the current test suite, and
produces the contextual data flow information observed while executing the program,
starting with an initial test suite. The contextual data flow information computed in
this phase includes the set of reaching definitions, the set of reachable uses and the
set of executed definition use pairs of the class state variables for each executed basic
block.

In the Dynamic Data Flow Analysis phase, Dynamic Data Flow Testing selects the data
flow information useful for inferring interesting test cases by excluding the data flow
events that depend on aliasing, and that are triggered by accessing a variable through
an escaped reference of some objects that are not under test. Dynamic Data Flow Testing
excludes these data flow events because they can lead to definition use pairs that are
not relevant for testing.

Consider, for example, the classes in Listing 6.3, the test case in Listing 6.4 and the
memory model reported in Figure 6.2. Listing 6.3 comprises three classes under test Z,
A and B; Listing 6.4 reports a test case t_e that execute the classes, and Figure 6.2 shows
the memory model created by DReaDs when executing the test case t_e. The memory
model in the figure represents the state of the objects in memory after executing the
test case t_e.

Focus on the last line of the test t_e (line 9, a2.getB()). In the execution state rep-
resented with the memory model in the figure, the variable a2 is an alias of the object
A#02, and the invocation of the method A.getB() on A#02 triggers a read event on the
object B#03. Since B#03 is part of the state of A#02 according to the memory model
shown in the figure, the read event on B#03 generated by executing line a2.getB() is
recorded by DReaDs as an use of the class state variable A.b through the invocation con-
text A.getB(). However, B#03 is also part of the state of A#01, which is part of the state
of Z#00, as pictured in the memory model. Therefore, by navigating the model, DReaDs
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1 class Z{
2 private A a;
3 Z(A a){
4 this .a=a;
5 }
6 void doSmt(){
7 print(a.getB());
8 }
9 }

10

11

12 class A{
13 private B b;
14 void setB(B b){
15 this .b=b;
16 }
17 B getB(){
18 return b;
19 }
20 }
21 class B{
22 }

Listing 6.3. Classes Under Test

1 @Test
2 public void t_e() {
3 A a1 = new A();
4 A a2 = new A();
5 B b = new B();
6 a1.setB(b);
7 a2.setB(b);
8 Z z = new Z(a1);
9 a2.getB();

10 }

Listing 6.4. Test t_e for classes Z A B

A 
#01

A 
#02

B 
#03

b b 

Z 
#00

a

Figure 6.2. Memory Model ob-
tained at the end of the execution
of t_e

detects that the read event in line a2.getB() in the invocation context A.getB(), is a
use of both the class state variables A.b and Z.a.b.

This use of Z.a.b within the context A.getB() has little relevance for generating
test cases for class Z, because it does not identify any legal combination of methods
of Z, and thus can divert the testing effort. Dynamic Data Flow Testing excludes these
definitions and uses, identifying only the set of data flow elements relevant for testing.

Formally, Dynamic Data Flow Testing distinguishes relevant and non-relevant data
flow elements by selecting definitions and uses according to the variables and the con-
texts. According to Definition 2.2, which defines contextual definitions and uses of
class state variable as tuples (var, hm1, m2, ..., mni, l), where var is the variable name
of a class c, hm1, m2, ..., mni is the sequence of method invocations that leads to the
definition or use, and l is the line of code of the definition or use event, Dynamic Data
Flow Testing identifies as non relevant definitions and uses where (i) Method m1 belong
to a class different from the class c that contains the defined (used) variable var, and
(ii) the class c is not under test.

With respect to the example discussed above, Dynamic Data Flow Testing identifies
the use of the variable Z.a.b with context A.getB() as non relevant for testing, because
the used variable and the invocation context involve two different objects (i.e., a use of
a variable of Z through the invocation of a method of A), and the use of A.b with context
A.getB() as relevant, because both the variable and the invocation context involve the
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same object A.

6.4 Inference of Test Objectives from Execution Traces

In the second step, Dynamic Data Flow Testing uses the data flow information computed
dynamically in the first step to identify new test objectives that correspond to not-yet-
executed data flow elements. Dynamic Data Flow Testing focuses on generating test
cases that exercise the interactions of methods through state variables, by considering
contextual definition use pairs of class state variables as test objectives.

Dynamic Data Flow Testing identifies new definition use pairs by pairing definitions
and uses that have been observed on different instances and execution traces, but never
executed together as a pair. Dynamic Data Flow Testing (i) uses the output of Dynamic
Data Flow Analysis to compute summaries of reaching definitions and reachable uses
for each method, and (ii) statically matches the information of different methods to
infer new pairs, while excluding the pairs already covered.

In the Test Objectives Inference phase, Dynamic Data Flow Testing re-organizes the
information produced with DReaDs by computing for each method m both the set
defs@exit of definitions that reach the exit of m along at least one execution, and the
set uses@entry of uses reachable from the entry of m along at least one execution:

Definition 6.1 (defs@exit). The set defs@exitm of class method m is the set of the
definitions of class state variables that are defined within m and have reached the exit
of m in at least one execution, according to the information computed dynamically by
Dynamic Data Flow Analysis.

Definition 6.2 (uses@entry). The set uses@entrym of a class method m is the set of uses
of class state variables that are defined within m and have been reached from the entry
of m in at least one execution, according to the information computed dynamically by
Dynamic Data Flow Analysis.

Then Dynamic Data Flow Testing infers new test objectives by computing the set of
pairs hdefs@exitm0 , uses@entrym00 i for all methods m0 and m00, obtained by matching the
definitions and the uses of the same class state variables, and by removing the already
executed pairs from the set.

The set of pairs hdefs@exitm0 , uses@entrym00 i is computed by statically matching
defs@exit and uses@entry, and can include infeasible pairs. However, differently from
classic static data flow analysis, the new test objectives are computed from dynamically
produced information, which includes only feasible definitions and uses by construc-
tion. Thus the approach suffers only from the possible infeasibility of the pairing, but
not of the single elements.

Dynamic Data Flow Testing terminates when it cannot infer any new test objectives.
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6.5 Test Case Generation

In the third step, Dynamic Data Flow Testing derives new test cases that execute the
newly identified test objectives. Dynamic Data Flow Testing is not bounded to a spe-
cific approach for generating the new test cases. In our experiments, we automatically
generated the test cases relying on a search based test case generation strategy.

A search based test case generation approach exploits some meta-heuristic algo-
rithms to automatically generate test cases that satisfy a given set of objectives. These
algorithms iteratively search or evolve a population of individuals, test cases in our
case, by exploiting on a fitness function that measure the distance of the individuals
from the optimal solution.

Current search based approaches exploit fitness functions that measure the struc-
tural adequacy of the individuals to generate test cases that satisfy control and (static)
data flow criteria. We survey such work in Chapter 8.

We implemented the Dynamic Data Flow Testing Test Case Generation step by defin-
ing a fitness function that extends existing search based techniques to satisfy contex-
tual definition use pairs. We design the fitness function to work with evolutionary
algorithms that use genetic algorithms to evolve a population of test cases. Below we
introduce search based testing and detail our proposed approach.

Search Based Testing

Search Based testing casts the problem of test generation as a search problem, and
applies efficient search algorithms such as genetic algorithms (GAs) to generate test
cases [McM04]. The approach is not bounded to a specific criterion, but can be adapted
to different criteria by defining new heuristics. Genetic algorithms incrementally evolve
an initial population of candidate individuals by means of search operators inspired
from natural evolution. The crossover between pairs of individuals produces two off-
spring that contain some genetic material from both parents, and the mutation of in-
dividuals introduces new genetic material. The representation and search operators
depend on the test generation problem at hand, for instance sequences of method calls
for testing classes [Ton04].

The fitness function measures how good individuals are with respect to the opti-
mization target, and the better the fitness value is, the higher the probability of an
individual for being selected for reproduction, thus gradually improving the fitness of
the best individual with each generation, until either an optimal solution is found or
some other stopping condition, for instance a timeout, is reached.

The fitness function executes the program under test with an input at a time, and
measures how close this input is to reach a particular structural entity chosen as the
optimization target. For example when optimizing either statement or branch cover-
age, the structural entity chosen as target is a node of the control flow graph of the
application.
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When optimizing for targeting a node of the control flow graph, the heuristic to
measure the distance of a test with respect to a node is both the approach level, which
measures the distance of the execution trace of the current test case from the target
node and the branch distance, which estimates how close a particular branch was to
evaluate to the desired outcome [McM04].

Approach level and branch distance are combined in the following function, which
is commonly used as a fitness function to target a node of the control flow graph of a
program:

nodeDistance = approach level+ normalize(branch distance) (6.1)

This is a minimising fitness function, that is, the target is covered if this function
evaluates to 0. The branch distance is calculated for the branch where the control
flow diverged, that is the point of diversion measured by the approach level. Since the
approach level is an integer number, the branch distance is commonly normalized in
the range [0,1] using a normalization function, such that the approach level always
dominates the branch distance.

Search Based Dynamic Data Flow Testing

We extended search based testing techniques [FA11a, BLM10] by implementing a fit-
ness function that targets the contextual definition use pairs computed in the former
two steps.

We define a fitness function that targets contextual definition use pairs by (i) defin-
ing a fitness function to target contextual definitions and uses, and (ii) extending the
fitness function for targeting pairs by exploiting the fitness function for the single ele-
ments. The reader should notice that we focus on search based techniques that target
the optimization of individual tests for individual coverage goals.

Contextual Definitions and Uses

We represent contextual definitions and uses as node-node fitness functions accord-
ing to the categorization proposed by Wegener et al. [WBS01] that is, we represent a
contextual definition or use as a series of nodes of the inter-procedural control flow
graph, and use some standard fitness metrics such as Equation 6.1 to measure the dis-
tance from a node.

Given a contextual data flow element (either a definition d or a use u)
e = (var, hm1, m2, ..., mni, l), as defined in Definition 2.2, where var is the variable
name of a class c, hm1, m2, ..., mni is the sequence of method invocations that leads to
the definition or use, and l is the line of code of the definition or use event; our fitness
function represents e as tuple of nodes of the control flow graph hn1, n2, ..., nmi that
maps hn1, n2..., nm�1i to the call points hm1, m2, ..., mni, and nm to l:
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e = hn1, n2, ..., nmi (6.2)

We define a fitness function that targets subsequent tuples of nodes by exploiting
the standard fitness metric reported in Equation 6.1 to guide the optimization towards
each node. The fitness returns 0 if and only if the input traverses each node in the
correct order, otherwise it returns the sum of the distance to reach each uncovered
node.

Formally, given an execution trace t and a contextual data flow element (either a
definition or a use) e = hn1, n2..., nmi, we define the fitness function that target e as
follows:

contex tualElementF i tness(hn1, n2..., nmi, t) =
X

i=1...m

fitnessSingleNode(ni , t) (6.3)

f i tnessSingleNode(ni , t) =

8
>><
>>:

nodeDistance(ni , t)
if i = 0_ nodeDistance(ni�1, t) = 0

1
if nodeDistance(ni�1, t)> 0

Thus we define a minimization fitness function, as in Equation 6.1.

Contextual Definition Use Pairs

To cover a definition use pair, we shall define an optimization that reaches both the
definition and the use in this order. We defined such fitness function by combining two
instances of Equation 6.3, for the definition and for the use, respectively. To properly
cover the pair, we need also to ensure both that there are no killing definitions between
the source definition and the target use, and that the definition and the use are covered
on the same object instance.

Dynamic Data Flow Testing satisfy both requirements by using the fitness function
contex tualElementF i tness of Equation 6.3 to steer the optimisation towards the def-
inition of the pair. If Dynamic Data Flow Testing reaches the definition, it analyzes the
execution trace generated by the test to identify the sub-traces that are both kill-free
with respect to the definition and that use the same object. Finally, Dynamic Data Flow
Testing retrieves the best value for computing the final fitness of the pair by applying
Equation 6.3 on the uses of each of the identified sub-traces. Below we describe the
approach in detail.
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Dynamic Data Flow Testing executes a test case and identifies the trace t that distin-
guishes the called object instances:

t = h(n1, o1), (n2, o2), ..., (nm, om)i (6.4)

where ni represents a node in the inter-procedural control flow graph of the class under
test, and oi is a unique ID that identifies the instance on which the node was executed.
We denote a sub-trace of t from (ni , oi) to (nj , oj) (inclusive) as ti, j , with i  j.

Given a trace t and a data flow event e = hn1, n2..., nmi (either a definition d or a
use u, as defined above in Equation 6.2), we define a data flow event that have been
executed in the trace t as e(t) = h(n1, o1), (n2, o2), ..., (nm, om)i, where ni identifies the
nodes of the inter procedural control flow graph executed in t that identify the defini-
tion or the use, and oi identifies the object instances on which each node was executed
in t.

Given a trace t, a contextual definition d(t) = h(nd
1, od

1 ), (n
d
2, od

2 ), ..., (n
d
m, od

m)i and
a contextual use u(t) = h(nu

1, ou
1), (n

u
2, ou

2), ..., (n
u
n, ou

n)i of the same variable v, the pair
hd, ui is executed in the trace t iff the chains of method invocations of both the definition
and the use start from the same object instance, and the value that is defined and read
belongs to the same object instance, that is, iff od

1 = ou
1, and od

m = ou
n.

Given a trace t, a definition d(t) = h(nd
1, od

1 ), (n
d
2, od

2 ), ..., (nd
m, od

m)i observed on t,
and a target use u= hnu

1, nu
2, ..., nu

ni, we define ut races(t, d(t), u) the set sub-traces of t
which are kill-free with respect of d(t), and that contains a full or partial match of the
use u. In detail, we define ut races(t, d(t), u) as a set (ti,x , ti,y , ...ti,z) of sub-traces of t
such that:

• each sub-trace ti, j starts from the definition d(t), that is, the index i corresponds
to the position of (nd

m, od
m) in the trace t,

• for each sub-trace ti, j , j is either the position of the next occurrence of a killing
definition d 0(t) of the same variable and on the same objects of d(t), or the end
of the execution trace if there is no further definition.

• each sub-trace ti, j contains either a chain of nodes-ids that correspond to a par-
tial march of u, that is, a chain of nodes h(n1, o1), (n2, o2), ..., (nx , ox)i such that
hn1, n2, ..., nxi ⇢ hnu

1, nu
2, ..., nu

ni and o1 = od
1 ; or a chain of nodes-ids that corre-

spond to a full match of u, that is, a chain of nodes h(n1, o1), (n2, o2), ..., (nn, on)i
such that hn1, n2, ..., nni= hnu

1, nu
2, ..., nu

ni and o1 = od
1 and on = od

n .

Given a set of sub-traces ut races(t, d(t), u), we define the set ut races⇤(t, d(t), u)
as the set of sub-traces in ut races(t, d(t), u) from which we remove the nodes that cor-
respond to partial or full matches of the use u on objects instances different from the
ones that appears in d(t). In detail, let ut races⇤(t, d(t), u) be the set (t⇤i,x , t⇤i,y , ...t⇤i,z)
of sub-traces obtained removing from each ti, j 2 ut races(t, d(t), u) all the chain of
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nodes-ids h(n1, o1), (n2, o2), ..., (nx , oy)i such that hn1, n2, ..., nxi ⇢ hnu
1, nu

2, ..., nu
vi and

o1 6= od
1 ; and the chain of nodes-ids h(n1, o1), (n2, o2), ..., (nv , oy)i such that

hn1, n2, ..., nvi= hnu
1, nu

2, ..., nu
vi and o1 6= od

1 or oy 6= od
n .

Thus the fitness of a test case with respect to a definition use pair (d, u) on trace t
is defined as the fitness to reach the definition plus the maximum fitness to reach the
use if the definition is not executed in t; or if the definition is reached, as the minimum
fitness to reach the use as computed on the sub-traces of t that are both kill-free with
respect to the definition and that interests the same object instances of the definition:

duF itness(d, u, t) =

8
>>>><
>>>>:

maxusefit+ contex tualElementF i tness(d, t)
if d is not covered by t,

min(contex tualElementF i tness(u, ti, j)
| ti, j 2 ut races⇤(d(t), t, u))

if d is covered by t by d(t)

(6.5)

Where maxusefit is the maximum fitness value of contex tualElementF i tness(u, t).



Chapter 7

Evaluation

We evaluated Dynamic Data Flow Testing by designing a prototype tool
for the Java programming language that we refer to DynaFlow, and by ex-
perimenting with a set of open source programs. This chapter describes the
experimental setting and discussed the evidence we collected. We show that the
Dynamic Data Flow Testing strategy can indeed detect test objectives exploiting
Dynamic Data Flow Analysis and generate new test cases to cover them. We
compare the fault detection ability of Dynamic Data Flow Testing both with
the initial the suite, and with the test suites generated randomly and for static
data flow coverage. The experiments indicate that (1) the test cases identi-
fied with our approach can reveal failures that could go otherwise undetected
with the initial test suite, (2) dynamic data flow testing is more effective than
classic data flow testing, and (3) the effectiveness of the generated test suite
depends more on the relevance of the identified test cases that on the size of
the suite.

The empirical evaluation addresses the main research question: “To what extent is
it possible to enhance an initial test suite by exploiting dynamic data flow information?”.

To answer this question, we implemented DynaFlow, a prototype implementation
of Dynamic Data Flow Testing for Java programs, and executed a set of experiments
on a benchmark of classes. We compare the test suites generated with DynaFlow with
the original test suites, to evaluate the ability of DynaFlow to enhance the initial suite.
We compare the DynaFlow test suites with the test suites generated with a state-of-
art test generator based on static data flow analysis, to highlight the improvement of
dynamic over classic data flow testing. Finally, we compare the DynaFlow test suites
with large test suites generated randomly to verify that the good results of DynaFlow
do not depend on the size of the test suite. We compare the test suites in terms of their
ability to reveal failures, and we approximate this ability as the number of mutants
killed by the test suites. The more mutants a test suite can kill, the more effective the
test suite is in revealing the corresponding faults.

81
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Figure 7.1. The architecture of DynaFlow and its relation with the workflow of Fig-
ure 6.1

Section 7.1 briefly describes the implementation details of DynaFlow, Section 7.2
presents the design of the experiment, Section 7.3 analyzes the obtained result, Sec-
tion 7.4 discusses our findings, and Section 7.5 reports the threats to the validity of the
study.

7.1 Prototype Implementation

We designed a prototype implementation of the Dynamic Data Flow Testing technique
for Java programs, which we called DynaFlow. DynaFlow takes a JUnit test suite and
a set of classes under test in input, and produces an enhanced test suite exploiting
dynamic data flow information. DynaFlow computes also the data flow information —
including observed and inferred definition use pairs — for each step of the execution
of the technique.

DynaFlow is implemented relying on a custom version of JDReaDs for performing
the dynamic analysis and the inference of the test objectives, and on a custom version of
the EVOSUITE tool for generating the test cases. We introduced JDReaDs in Section 4.6,
while EVOSUITE1 is a mature search based testing tool for Java, originally developed
by Fraser and Arcuri [FA11a, FA13]. EVOSUITE generates test cases using genetic algo-
rithms. It iteratively evolves an initial population of test suites by applying crossover

1http://www.evosuite.org
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and mutation operators to the individuals. A distinctive characteristic of EVOSUITE is
the possibility of targeting the optimization of a whole test suite: While targeting the
optimization of a whole suite, EVOSUITE aims to optimise sets of test cases towards
covering all goals described by a coverage criterion.

Figure 7.1 show the architecture of DynaFlow and its relation with the workflow
of Dynamic Data Flow Testing described in Section 6.2. DynaFlow includes JDReaDs
and EVOSUITE. DynaFlow uses JDReaDs to (1) select the “relevant” definition use pairs
as discussed in Section 6.3, and (2) perform the static matching between defs@exit
and uses@entry to produce the test objectives. JDReaDs for DynaFlow serializes the
data flow information, including the inferred test objetives, in a file, which is passed as
input to our custom implementation of EVOSUITE.

We extended EVOSUITE for DynaFlow to target the test objectives passed by the
analysis. We modified EVOSUITE to process the test objectives passed by JDReaDs, we
implemented the fitness function that we defined in Section 6.5, and we implemented
a mechanism to keep track of data flow coverage, which records active definitions and
kill events at runtime. We implemented many of these features on top of a version of
EVOSUITE that targets static data flow test objectives, which we developed in previous
work [VMGF13].

In particular, we extended EVOSUITE to encode DynaFlow definition use pairs as
pairs of nodes of the interprocedural control flow graph, and to instrument the code
locations corresponding to the nodes to record the execution of definitions and uses.
EVOSUITE has an option to insert the necessary instrumentation for tracking the invo-
cation context of every definition and use event: We exploited this option to properly
distinguish definitions and uses on their context. We also added a runtime analysis
modules to register active definitions, kill events and the coverage of pairs.

On top of these modifications, we implemented the fitness of Equation 6.5 for tar-
geting contextual definition use pairs. Our fitness exploits the modules of EVOSUITE

that computes the approach level and the branch distance given a target node and an
execution trace. We also rely on the standard implementation of the crossover and
mutation operators provided by the tool.

Our original fitness function targets the optimization of single tests for executing
individual objectives. In EVOSUITE for DynaFlow we also implemented a whole suite of
fitness functions to exploit the performance and optimization of the tool. The resulting
fitness function is the sum of the individual fitnesses of each goal, for each test in a test
suite, as shows Equation 7.1, where S is the set of execution traces generated by the
test suite, and P is the set of contextual definition use pairs to be used as test objectives.

duSuiteFitness(S) =
X

ti2S

X

dk ,uk2P

duF i tness(dk, uk, ti) (7.1)

We took advantage of the archive feature of evosuite to improve the performances
of the approach [RVAF16]: EVOSUITE archives the individuals (i.e., the test cases) that
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satisfied a goal, and removes the satisfied goals from the set of test objectives yet to
be covered. At the end of the execution, EVOSUITE returns a suite composed of all the
individuals in the archive.

We performed all the experiments discussed in this section using EVOSUITE for Dy-
naFlow configured to use the whole suite generation fitness function with the archive
feature.

7.2 Experimental Setting

We evaluated DynaFlow on 30 Java classes extracted from some projects of the SF100
set of programs [FA12b]. The benchmark reflects the expected usage scenario of Dy-
naFlow, which targets the testing of classes with complex state. We manually selected
classes among the ones that both include one or more non-primitive fields and imple-
ment one or more methods that access or modify the value of such fields in a non trivial
way.

We generated the initial suites with EVOSUITE for branch coverage, which is its
default EVOSUITE configuration. This allows to limit the biases caused by the initial
suite, and to intrinsically compare DynaFlow suites with test suites optimized for branch
coverage.

Table 7.1 reports the relevant characteristics of the classes used in our experiments:
the number of lines of code (LOC), the number of dependent classes as computed using
the Dependency Finder tool2 (Reachable code – # classes) and the sum of lines of code
of the class under test and its dependent classes (Reachable code – LOC). The analysis
domain of DynaFlow is the union of the class under test and its dependent classes, that
is, the classes directly or indirectly called from the class under test. Thus the number of
dependent classes and their LOCs indicates the size of the DynaFlow analysis domain.
The last column reports the branch coverage obtained when executing the initial test
suite generated with EVOSUITE for branch coverage.

For each subject class, we executed DynaFlow to enhance the initial test suite, with
a maximum budget of three DynaFlow iterations. We generated two additional test
suites for each class: a large suite generated randomly and a suite that covers the def-
use pairs computed statically. We generated the large test suite using Randoop with a
limit of 1000 test cases, and the static def-use test suite using EVOSUITE for static data
flow testing [VMGF13].

We evaluated the effectiveness of the test suites as the amount of mutants killed
when executing the suites. We use these data as a proxy measure of the amounts of
failures that can be revealed by the test suites. We generated mutants for the classes
under test and their dependent classes with the PiTest mutation analysis tool,3 a tool
commonly adopted in recent related work [IH14, GJG14].

2http://depfind.sourceforge.net
3http://pitest.org

http://depfind.sourceforge.net
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Table 7.1. Benchmark classes

Reachable code Branch
CoverageClass Project LOC # classes LOC

AttributeRegistry freemind 371 68 15995 76%
ColorImage jiggler 1273 43 11758 11%
HandballModel jhandballmoves 814 110 9979 11%
Robot at-robots2-j 417 109 7411 29%
ComplexImage jiggler 872 20 7153 50%
MealList caloriecount 388 30 4685 97%
GameState gangup 472 23 3813 95%
DecadalModel corina 295 15 3680 70%
BattleStatistics twfbplayer 578 29 3665 83%
Hero dsachat 349 19 3576 57%
FoodList caloriecount 146 24 3464 100%
MoveEvent jhandballmoves 247 22 3076 75%
Knight feudalismgame 393 16 2471 34%
Challenge dsachat 309 7 2370 22%
FieldInfo fixsuite 367 14 2228 100%
Formation gfarcegestionfa 104 13 2195 100%
ComponentInfo fixsuite 276 13 2119 100%
ObjectChartData
Model jopenchart 252 10 1922 100%

ProductDetails a4j 518 19 1783 90%
ProductInfo a4j 96 7 1338 100%
HardwareBus at-robots2-j 144 13 1310 100%
HL7FieldImpl openhre 172 10 1078 95%
GroupInfo fixsuite 179 6 1021 80%
StackedChartData
ModelConstraints jopenchart 164 5 910 69%

EmailFacadeImpl bpmail 414 13 854 7%
MemoryRegion at-robots2-j 48 7 839 100%
ListChannel caloriecount 78 14 728 62%
InventorySavePet petsoar 91 6 496 88%
HL7TableImpl openhre 60 5 396 100%
DefaultDataSet jopenchart 123 2 187 75%

7.3 Experimental Results

Tables 7.2 and 7.3 report the results of our experiments. For each subject class (first
column of both tables), Table 7.2 indicates the number of definition use pairs (number of
test objectives) identified by DynaFlow and the number of mutants killed by the generated
test suites. Table 7.3 reports the size (number of test cases) of the generated test suites.

In Table 7.2, the columns number of test objectives report the number of definition
use pairs executed (1) by the initial test suite generated with EVOSUITE for branch cov-
erage (column Initially covered), (2) after three iterations of DynaFlow (column Covered
DynaFlow) and (3) not yet covered after the third iteration. In our experiment the en-
hanced test suite always executes a higher number of definition use pairs than the initial
suite. In total, the enhanced test suites execute 44% more pairs than the initial suites.

We report the increase distribution per class in the boxplots in Figure 7.2. In partic-
ular, we observe a median increase of 83%, with the first quartile being 27%, the third
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Table 7.2. Experimental Results: Number of Test Objectives and Killed Mutants

Number of test objectives Number of killed mutants

Class
Initially
covered

Covered
DynaFlow Not covered

EvoSuite
-branch

EvoSuite
-data flow Randoop DynaFlow

AttributeRegistry 331 375 129 125 143 0 145
ColorImage 230 441 1439 165 107 34 270
HandballModel 98 99 160 395 264 213 423
Robot 91 188 129 43 32 60 63
ComplexImage 105 185 354 126 75 11 165
MealList 23 108 101 125 20 49 162
GameState 2133 2203 198 150 154 57 203
DecadalModel 198 556 381 66 79 34 69
BattleStatistics 317 380 95 294 175 93 334
Hero 44 66 20 166 113 0 177
FoodList 14 64 34 35 28 14 51
MoveEvent 74 194 90 86 15 0 102
Knight 76 89 106 134 99 135 166
Challenge 54 103 66 89 59 5 132
FieldInfo 13 50 24 36 40 31 56
Formation 10 49 8 17 23 11 18
ComponentInfo 42 123 31 64 77 55 69
ObjectChartData
Model 34 38 87 105 0 55 141

ProductDetails 108 228 30 314 294 295 498
ProductInfo 113 281 15 246 61 215 289
HardwareBus 45 57 10 27 21 14 29
HL7FieldImpl 24 46 6 64 74 0 75
GroupInfo 32 113 40 85 26 81 98
StackedChartData
ModelConstraints 102 179 136 142 7 110 209

EmailFacadeImpl 34 56 3 41 44 0 61
MemoryRegion 44 54 9 53 38 0 58
ListChannel 23 44 0 9 27 8 51
InventorySavePet 12 20 3 16 5 24 31
HL7TableImpl 13 19 0 34 34 35 38
DefaultDataSet 9 14 2 12 25 25 23
Sum 4446 6422 3706 3264 2159 1664 4206

All the experiments have been repeated 6 times with different seeds to govern the random mechanisms of the
test generation. The 90th confidence interval was 5.5% of the measured value on the average, with a maximum
of 11.5%. The 95th confidence interval was 6.5% of the measured value on the average, with a maximum of
13.7%.

162%, and the minimum and maximum increments 1% and 391%, respectively. Thus,
the iterative process of DynaFlow can both identify new test objectives and generate
new test cases to execute them.

The test objectives that are identified but not executed by DynaFlow amount to 37%
of all the identified pairs. Some of these test objectives are identified at the third itera-
tion step for which no test generation attempt has been taken, others are not executed
due to known limitations of EVOSUITE [FA12b], yet others are possibly infeasible.

The last four columns of Table 7.2 (columns Number of killed mutants) shows the
number of mutants killed by the generated test suites. The DynaFlow enhanced test
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Table 7.3. Experimental Results: Number of Test Cases

Number of test cases

Class
EvoSuite
-branch

EvoSuite
-data flow Randoop DynaFlow

AttributeRegistry 19 19 1000 48
ColorImage 19 33 1000 32
HandballModel 36 63 1000 60
Robot 20 60 1000 41
ComplexImage 16 23 1000 37
MealList 21 11 1000 61
GameState 7 53 1000 51
DecadalModel 23 38 1000 72
BattleStatistics 20 34 1000 62
Hero 14 24 1000 80
FoodList 16 50 1000 46
MoveEvent 20 48 1000 120
Knight 23 65 1000 201
Challenge 19 15 1000 58
FieldInfo 3 15 1000 18
Formation 5 37 1000 46
ComponentInfo 8 34 1000 46
ObjectChartData
Model 11 39 1000 76

ProductDetails 13 58 1000 105
ProductInfo 4 8 1000 67
HardwareBus 5 15 1000 16
HL7FieldImpl 8 38 1000 28
GroupInfo 9 34 1000 53
StackedChartData
ModelConstraints 10 4 1000 39

EmailFacadeImpl 12 12 1000 25
MemoryRegion 7 9 1000 48
ListChannel 1 10 1000 26
InventorySavePet 8 33 1000 21
HL7TableImpl 5 7 1000 13
DefaultDataSet 9 20 1000 23
Sum 391 909 30000 1619

All the experiments have been repeated 6 times with different seeds to
govern the random mechanisms of the test generation. The 90th confi-
dence interval was 5.5% of the measured value on the average, with a
maximum of 11.5%. The 95th confidence interval was 6.5% of the mea-
sured value on the average, with a maximum of 13.7%.

suite (column DynaFlow) consistently kills more mutants than the test suite generated
by EVOSUITE for branch coverage (column EVOSUITE-branch) that was used to seed
DynaFlow. In total, DynaFlow kills 942 (29%) more mutants than the original test
suite.

Figure 7.3 reports the increase distribution per class. We observe a median in-
crement of 27%, with the first quartile being 12%, the third 48%, and the minimum
and maximum increments 5% and 467%, respectively. These results indicate that the
new test cases generated by exploiting the dynamic data flow information effectively
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Figure 7.2. Distribution of the increase of executed definition use pair by the enhanced
test suites: (a) distribution of increase per class, (b) distribution of the percentage in-
crease per class.

enhance the initial test suite in terms of fault detection.

Column EVOSUITE-data flow reports the mutants killed by test suites generated with
EVOSUITE for static data flow coverage. DynaFlow’s test suites kills more mutants that
the ones generated for static data flow coverage for most classes, with an average of
twice as many killed mutants. Per class, we observe a median increment of number
of mutants killed with DynaFlow over EVOSUITE for static data flow coverage of 69%,
with the first quartile being 32%, and the third 152%. This result indicates that dy-
namic data flow analysis selects better test objectives than static data flow analysis.
Counter-intuitively the data in the table indicate that EVOSUITE-branch slightly outper-
forms EVOSUITE-data flow, differently from the results we obtained in previous experi-
ments [VMGF13]. This may be caused by the fact that this benchmark includes complex
classes that are difficult to analyze with static analysis.

Table 7.3 (columns Number of test cases) reports the amount of test cases gener-
ated with the different approaches, and indicates that DynaFlow generates larger test
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Figure 7.3. Distribution of the increase of killed mutants by the enhanced test suites.
(a) reports the distribution of the increase per class, while (b) the distribution of the
percentage increase per class.

suites than the other approaches, thus raising the question of the importance of the
size of the test suites. To check the impact of the site size on the test effectiveness, we
compared the results of DynaFlow test suites with the results of very large test suites
randomly generated with Randoop. The results of the effectiveness of these large suites
are reported in the column Randoop of Table 7.2.

We can see that Randoop is much less effective than any of the other techniques,
despite the very large size of the test suites generated with Randoop (1000 test cases
for each suite). In total, the DynaFlow test suites kill 2.5 times more mutants than
Randoop test suites. We observe that Randoop kills zero or few mutants for some
classes. This happens for classes that require a complex initialization or a complex
interaction with other classes to be thoroughly exercised. This indicates that the larger
amount to mutants killed with DynaFlow test suites does not depend on the size of the
suite, but on the quality of the test cases.

The dynamic analysis component of DynaFlow generated the test objectives exe-
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Listing 7.1. Example of mutants killed only by DynaFlow test cases

1 class BattleStatistics {
2 private AllCombatantSidesCounter swaps = new AllCombatantSidesCounter();
3 public int totalSwaps(final CombatantSide side) {
4 return swaps.getSideValue(side); // Mutant: return 0;
5 }
6 }
7
8 class AllCombatantSidesCounter {
9 private Map<CombatantSide, Counter> perSideCounters = new HashMap<>();

10 void incrementSide(final CombatantSide side) {
11 if (side == null) {
12 for (final Counter counter : perSideCounters.values()) {
13 counter.increment();
14 }
15 } else {
16 perSideCounters.get(side).increment();
17 }
18 }
19
20 public int getSideValue(CombatantSide side) {
21 int sum = 0;
22 if (side == null) {
23 for (Counter counter : perSideCounters.values()) {
24 sum += counter.getValue();
25 }
26 return sum; // Mutant: return 0;
27 }
28 return perSideCounters.get(side).getValue();
29 // Mutant: return 0;
30 }
31 }

cuting the test cases of each class within 10 seconds in most of the cases, and within
45 seconds in few worst cases. The test generation step of DynaFlow had a maximum
budget of 5 minutes per iteration, with performances fully acceptable in the context of
automated test case generation.

7.4 Discussion

The results presented in the former sections indicate that Dynamic Data Flow Testing
can augment an initial test suite with test cases that reveal faults that would otherwise
go undetected, and thus positively answer our research question. To support our hy-
pothesis that dynamic data flow analysis can identify interactions among methods that
are difficult to find otherwise, we manually inspected the mutants killed only by the
DynaFlow test cases and investigated their nature.

Indeed, we found out that most of the mutants killed only by DynaFlow test cases
are characterised by particular combinations of method calls that are triggered by test
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objectives that involve interactions through dynamically instantiated state variables.
These interactions require the methods of the class under test to be executed in multi-
ple invocation contexts and with different values of the (nested) class state variables.
DynaFlow can identify such interactions dynamically, and generate test cases that kill
the corresponding mutants, while the other approaches cannot identify these interac-
tions and thus fail to generate the required test cases.

Listing 7.1 shows two classes and a set of mutants that are killed only by DynaFlow
test cases. The listing shows the class under test BattleStatistics that owns a refer-
ence to class AllCombatantSidesCounter through its swap field. The method total-

Swaps() in class BattleStatistics invokes the method getSideValue() in class All-
CombatantSidesCounter.

Three mutants, obtained with the PiTest operator that substitutes the return state-
ments in method totalSwaps() and getSideValue() with return 0, are indicated
with comments in the figure. In our experiments, only DynaFlow test cases kill these
three mutants. This happens because DynaFlow targets the interactions on the sub-
fields of variable swap that are nested in the state of the class under test: DynaFlow
requires the two uses of the state variable BattleStatistics.swaps.perSideCoun-

ters at lines 23 and 28 to be coupled with observed definitions of that state variable.
For example, DynaFlow explicitly requires the use at line 23 to be executed after the
definition within the method incrementSide() at line 16 that modifies the content of
the map perSideCounter. This increases the chances of returning a sum different from
0 and exposing the mutant at line 26. None of the other approaches identifies test ob-
jectives that capture this combinations of method calls, and thus may not generate test
cases that exercise such combinations.

7.5 Threats to Validity

We conclude the presentation of the experimental validation results by acknowledging
the threats that may limit the validity of our experimental results, and briefly discusses
the countermeasures that we adopted to mitigate such threats.

Threats to internal validity may derive from the evaluation setting and execution,
and depend on the DynaFlow prototype and EVOSUITE. Although we tested carefully
the DynaFlow prototype, we cannot exclude the presence of faults. We are aware that
the limitations of EVOSUITE could prevent the execution of feasible definition use pairs,
and thus our results may be a pessimistic approximation of the effectiveness of Dy-
naFlow. Current work on improving EVOSUITE could reduce this limitation, potentially
increase the effectiveness of our prototype, and improve the accuracy of the results.
The randomness nature of EVOSUITE could also impact on the results, to reduce such
impact we repeated each experiment multiple times.

The selection of the initial test suite may also affect the results. We selected the
initial suite automatically to avoid biases due to manual generation, and we used EVO-
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SUITE for branch coverage, being a common tool and a common setting for the tool.
We conducted some experiments with different initial test suites and we did not reveal
major differences in the obtained results. Thus we decided to perform the main core
of the experiments with initial test suites generated automatically.

Threats to construct validity involve how we measure the effectiveness of DynaFlow.
We approximate the fault detection capability as the amount of killed mutants that
we generated with the PiTest tool. Approximating fault detection in terms of killed
mutants is common practice in current research projects and is widely accepted as a
reasonable proxy measure. PiTest has been adopted in recent work [IH14, GJG14], and
we modified it to prevent undesired approximations of the results. We plan to repeat
our experiments with different mutation analysis tools and with real program faults.

Threats to external validity may derive from the selection of the benchmark classes.
We mitigated this thread by randomly selecting classes from a well known corpus
(SF100).



Chapter 8

Related Work

Dynamic Data Flow Testing relates to Data Flow Analysis and Testing, Au-
tomated Test Case Generation and Dynamic Data Analysis. We surveyed data
flow analysis and testing in Chapters 2 and 3. This chapter describes the state
of the art in Automated Test Case Generation and in Dynamic Data Analysis,
focusing on techniques for object-oriented systems.

In this thesis we present a data flow test case generation approach that benefits from
a new dynamic application of data flow analysis. Our work relates to data flow analysis
and testing techniques, which we discussed in Chapters 2 and 3, but also to techniques
for automatically generating test cases for object-oriented systems, and techniques for
dynamic data analysis. In this section we discuss the main automated test case gener-
ation techniques, and briefly survey the work on dynamic data analysis.

8.1 Automated Test Case Generation

In the last decades, researchers have been working extensively towards the automation
of test case generation and selection [Ber07]. By automating the tedious and error
prone activity of selecting a set of test cases, researchers aims to reduce the cost of
software quality assurance, which constitutes a large part of the cost of modern software
development.

In this section, we survey the most important results that have been achieved in this
area and discuss the main challenges that still need to be addressed. We focus the dis-
cussion on the techniques for testing object-oriented systems which employs static and
dynamic software analysis to steer the test generation, for they are more closely related
to Dynamic Data Flow Testing. We discuss existing work on automated test case gener-
ation classifying them on their background techniques: Model Based Testing, Random
Testing, Symbolic Execution, Search-based Testing and hybrid approaches [ABC+13].

93
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8.1.1 Model-Based Testing

Model Based Testing techniques use models of the expected behavior of software to
systematically test an application. These techniques exploit models that describe the
structure of the input space to automatically or semi-automatically generate test inputs
and to define adequacy criteria, and rely on the discrepancies between the models and
the program behavior to identify boundaries and error cases.

Model Based Testing techniques exploit a large variety of models that can represent
the system behavior and structure at different levels of abstraction. Formal models
provide a formal description of the system, and can typically be used to define fully au-
tomated test generation techniques. Semi-formal models require some human judge-
ment to generate test cases and map the model entities on the actual software. Recent
advances in the automatic generation of behavioral models from program executions
has opened a new way to fully automate model based testing techniques.

A considerable amount of work targets the generation of test inputs, the selection
of test scenarios, and the generation of test oracles from formal models and specifica-
tion [HBB+09]. Finite State Machines (FSM) and Labelled Transition Systems (LTS)
have been used to model the software behavior, and then define adequacy criteria on
the paths represented in the models to select test scenarios [PY07, Tre08]. FSM can be
extended with information on the input domain to enable automated test input gener-
ation and to exclude infeasible interactions [NMT12, HKU02].

Some FSM-based techniques are closely related to Dynamic Data Flow Testing. Hong
et al. and Gallagher et al. define a Model Based Testing technique that combines FSM
models and data flow testing to test the interactions within and between classes in
object-oriented systems [HKC95, GOC06]. Hong et al. technique models the behavior
of a single class as a finite state machine, transforms the representation into a data
flow graph that explicitly identifies the definitions and uses of each state variable of
the class, and applies data flow testing to produce test case specifications that can be
used to test the class. Gallagher et al. extended their approach to target the testing of
multiple classes, to exclude (some) infeasible paths from the models, and proposed to
integrate an automated test input generator in the technique (however, for evaluating
the technique they partially relied on manual testing to generate the test cases). With
respect to these approaches, Dynamic Data Flow Testing does not rely on software spec-
ifications, directly addresses the dynamic constructs of object-oriented languages, and
it is fully automated.

Other Model Based Testing approaches use formal and algebraic specification to
both select test objectives and automatically generate test data [SC96, DF94]. To ease
the applicability of formal specifications, which are typically complicate and expensive
to apply, some work proposed user-friendly specifications suitable for automating test
case generation [Mey92, GGJ+10]. Well-designed specifications suitable for automatic
test generation are seldom available, and currently discouraged by popular develop-
ment processes such as Agile ones.
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A variety of techniques uses UML models to select test scenarios and inputs for test-
ing functional and non-functional properties of software. For instance, model based
testing approaches extract test scenarios from sequence chart [NZR10, DH11], state-
charts [OA99], and use case diagram [KKP+08]. Recent UML-based techniques includes
the testing of non-functional properties of software [TRLB+14].

8.1.2 Random Testing

Random testing approaches generate test inputs by randomly sampling the input space
of the program under test. Random testing is completely unbiased, can easily be applied
and generates a large number of test cases. However, due to the size and complexity of
the input space of an application, is unlikely for pure-random testing to be effective in
revealing program faults. Recent advances in random testing research partially solved
this problem by complementing random approaches with dynamic and static analysis
techniques that drive the random search towards either interesting or never observed
areas of the input space. Feedback directed random techniques can cover a significant
part of the program under test with a minimum cost.

Random approaches have been proven to be a viable solution for automatically gen-
erating a large number of test cases with a minimum generation cost [CS04, GKS05,
PLEB07, CLOM08]. The advantages of Random Testing are that it neither requires any
domain and specific knowledge to generate test cases, nor employs computationally ex-
pensive techniques like Symbolic Execution. However, pure-random testing approaches
seldom achieve high structural coverage, and typically perform a shallow exploration
of the application control flow. This is because, without any restrictions on the input
domain, the probability of executing a specific code element is very low [OP97]. Fur-
thermore, random testing tends to generate a huge amount of invalid test cases, that
either do not compile, or execute the program in unintended ways raising unwanted
exceptions.

Recent research work mitigates these issues by combining random testing with some
mechanisms to improve the smartness of the random search.

Feedback-directed random testing techniques employ a feedback mechanism to di-
rect the test generation towards more effective test cases [PLEB07]. These approaches
incrementally generate test cases, executing them at each step to identify valid and in-
valid sequences of statements. During the generation of test cases, if a test case contains
a sequence of statements that leads to a compilation error or an unexpected exception,
the sequence is discarded and substituted with a new (randomly generated) one —
until a maximum test length or a time budget is reached.

The original feedback random testing approaches have been extended with dy-
namic and static analysis to further help the random search [AEK+06, TXT+09, ZZLX10,
Zha11, MAZ+15]. Palulu improves the search using dynamic analysis to infer a call se-
quence model from a sample execution, and then follows that model to create test
cases [AEK+06]. RecGen and MSeqGen rely on statically built data flow models to
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identify pairs of method invocations that may interact on the same variables, and
then weight the random search to select these pairs with higher probability [TXT+09,
ZZLX10].

Palus and GRT uses both dynamic and static analysis to improve the random gen-
eration [Zha11, MAZ+15]. Both uses static analysis to identify method dependences
that derive from accesses to common fields. Palus uses a dynamic step to captures se-
quences of method calls from the system execution traces, and then generalizes them
in a call sequence model to be extended randomly [Zha11]. GRT refines and integrate
the information computed by static analysis with a set of more detailed information
observed dynamically while executing the program [MAZ+15]. Dynamic Data Flow
Testing shares with these techniques test objectives that identify interactions between
methods, and the idea to help the search relying on dynamic information, but considers
a novel class of test objectives that are difficult to compute or address with any other
existing technique.

Adaptive random testing (ART) techniques follow a different rationale to improve
the effectiveness of random testing. Empirical studies have shown that failure-causing
inputs tend to form contiguous regions in the input space [CCMY96]. Building on
this, ART techniques maximize the distance between test inputs according to a certain
metric of the state space, aiming at generating test cases that evenly spread across the
input domain [CLM05]. Different distance metrics have been investigated in literature,
targeting both single input programs and object-oriented systems [CLOM08]. A further
improvement of the approach exploits method preconditions to further guide object
selection [WGMO10].

Despite the amount of work on the topic, Arcuri and Briand demonstrated that,
given a fixed time budget, the overhead caused by the computation of the distance
metric makes ART less effective than pure-random approaches, questioning its practical
effectiveness [AB11]. Another general disadvantage of random testing is that random
generated test cases are in general particularly difficult to interpret, consequently a
considerable effort is required to understand them and to write meaningful oracles.

8.1.3 Symbolic Execution

Test generation techniques that rely on symbolic execution execute the program with
symbolic input values, and compute expressions on the input values that indicate the
conditions to execute a given path [Kin76]. Symbolic executors rely on automated
theorem provers to generate test cases that cover the corresponding program paths.
Unfortunately the number of paths in a program is typically infinite and exhaustive
symbolic execution is impossible. Testing techniques based on symbolic execution can
explore the execution space systematically (up to a finite amount) and can thus address
rare corner cases, but suffers from the difficulty of automatically solving complex path
conditions, as the ones often generated while symbolically executing non trivial pro-
grams. Moreover, despite the improvements in automated theorem proving obtained in
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the last decades, which allowed the implementation of robust symbolic execution tool
(e.g. KLEE [CDE08] and JPF [KPV03]), some program constructs cannot be analyzed
precisely and efficiently. Nevertheless, Symbolic Execution is still a very active research
field and found some important industrial applications [CS13].

The original approaches to symbolic execution were proposed in the 70s and 80s
and address sequential programs with simple inputs of a limited set of primitive types
[BEL75, Cla76, Kin76, RHC76]. This is mostly because of limitations of automated
theorem provers in dealing with complex path conditions and some program types (for
instance, floating point arithmetics). Recent advances of theorem provers and the rapid
increase of performances of modern hardware allowed the definition of new techniques
which scale to more complex programs, and in particular to object-oriented systems.

Generalized Symbolic Execution (GSE) improved over the original approaches al-
lowing the analysis of programs with complex data structures as inputs and a multi
procedural and multi thread structure [KPV03]. GSE exploits lazy initialization to han-
dle recursive data structures and methods with multiple parameters, and employs a
theorem prover whose built-in capabilities allow handling non determinism such as
multi-threading. GSE extends Symbolic Execution and Model Checking to Java, and
has been developed within the Java PathFinder (JPF) model checker and symbolic ex-
ecutor (JPF–SE) [VPK04, APV07]. Other examples of symbolic techniques applicable
on data structures in object-oriented code include Symstra, JBSE, Bogor/Kiasan, and
Symclat [dPX+06, XMSN05, DLR06, BDP13]. However, despite the improvements in
automated theorem proving, some program constructs still cannot be analyzed pre-
cisely and efficiently.

An efficient way to overcome part of the limitations of symbolic execution is offered
by Dynamic Symbolic Execution (DSE). DSE interweaves concrete and symbolic exe-
cution: DSE starts by executing a random input and generating the path condition for
the executed path. Then, it negates a branch condition of the path constraint collected
on the concrete execution path, and submits the new formula to a solver to obtain a
new input that characterize test cases that both reach not-yet-covered branches and
discover new paths. DSE also replaces symbolic values with concrete ones every time
the theorem prover cannot deal with them. This allows DSE to partially overcome the
limitations of classic symbolic execution, at the expense of some precision [TdH08].
DSE strategies for object-oriented systems have been implemented in tools like jCUTE
(Java) and Pex (.NET) [SA06, TdH08]. Dynamic Data Flow Testing shares with DSE the
idea of alternating dynamic and static analysis to use observed information to overcome
the limitations of pure static approaches.

These techniques typically target the exploration of the path structure of the meth-
ods, but are not driven by any inter-procedural test objectives that explicitly identify the
interesting method sequences, which are selected systematically up to a certain length.
Some techniques rely on static and dynamic analysis to select interesting method se-
quences to execute with symbolic inputs. Thummalapenta et al. proposed MSeqGen
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that statically mines sequences of method calls from the source code and use PEX to
instantiate complex objects [TXT+09]. Thummalapenta et al. proposed Seeker that en-
codes the class state as a set of conditional branches, and synthesizes method sequences
by combining static and dynamic analyses to execute the target class state [TXT+11].
The test generation approach of Martena et al. relies on static data flow analysis to
derive a set of interesting method sequences to be symbolically analyzed [MOP02].

Su et al. propose symbolic techniques to satisfy data flow relations within meth-
ods or procedures [SFP+15]. No other testing technique based on symbolic execution
directly targets the inter procedural data flow relation which occurs between methods.

8.1.4 Search Based Testing

Search based testing approaches exploit meta-heuristic search algorithms to generate
test cases, casting the problem of test generation as a search problem. Meta-heuristic
search techniques define heuristics to find sufficiently good solutions to optimization
problems which are (typically) hard or impossible to solve in polynomial time. Search
based testing approaches use a fitness function to estimate how well individuals fit
an optimization target, and select the individuals to be reproduced according to their
fitness. By varying the fitness function, search based testing techniques can target dif-
ferent optimizations. Several Search Based Testing approaches have been defined in
literature to generate test cases that satisfy different structural criteria, and to target
both functional and non functional properties [McM04]. Although search based ap-
proaches do not guarantee to obtain the optimal solution, they have been proven to be
very effective and scalable in practice [FA12b].

Adapting a meta heuristic search to a specific testing problem requires a set of key
decisions: (i) encoding test cases so that they can be manipulated by the algorithm,
(ii) selecting a suitable meta-heuristic algorithm for the search, (iii) tuning the meta-
heuristic for the specific problem, (iv) definining a fitness function to guide the search
towards the test objectives. The literature contains a wide variety of approaches that
propose different solutions for each of these decisions.

The first requirement to cast the problem of test generation as a search one is the
definition of an encoding of the test cases. For many applications, the tests can be
represented simply using an input vector, represented either with real values or string
of binary digits [McM04]. Special encodes have been proposed for representing test
cases of object-oriented systems: In this case, tests are generally represented by linear
sequences of method calls [Ton04].

The second element is the choice of the meta-heuristic search algorithm employed
for the search. Different algorithms have been used in search based testing techniques,
including but not limited to Hill Climbing, Simulated Annealing and Genetic Algo-
rithms [Kor90, TCMM98, PHP99].

Search based techniques can be directed to alternative test goals by defining appro-
priate fitness functions. To date researchers investigated the application of search based
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testing to automatically generate test cases with different targets. Many approaches
have been defined for covering specific program structures, in particular to achieve high
structural coverage according to a given coverage criterion [Rop97, FA13, VMGF13].
Other techniques focus on exercising some specific program feature as described by a
specification [BW03], are used to generate a particular usage scenario that fit or dis-
prove a given property [BPS03], or were defined to test non functional properties of
the application [ATF09], for example for performing stress testing [BLS05]. Recent ap-
plications of search based technique includes also the testing of programs through their
GUI [GFZ12], and testing of databases schemas [KMW13].

In the remaining of this section we will discuss the main approaches for structural
testing of object-oriented systems, which are the most related to Dynamic Data Flow
Testing.

Tonella firstly defined a search based technique based on genetic algorithms to gen-
erate unit tests of classes [Ton04]. Tonella represents the test cases as sequences of
statements for class instantiations, method invocations and instantiations of objects to
use as parameters, and developed a prototype eToc to generate test cases that satisfy
branch coverage for Java programs.

Tonella’s work highlighted some of the problematics of applying meta-heuristic
techniques to object-oriented systems. When encoding the individuals as unbounded
method sequences, the search tends to select individuals with an increasing length. If
the size of the test is not directly taken in account, the test cases length can abnormally
grows over time [FA11b]. Moreover, the construction of the test cases is complicated by
the complexity of object-oriented programming languages. The state based behavior
of objects complicate the search, and constructs like polymorphism or objects which
require complex parameters make the encoding of the test cases and the optimization
particularly challenging.

To improve coverage of Java classes that require complex string inputs, Shahbaz et
al. extended Tonella’s eToc approach with Web searches to retrieve examples of valid
inputs to use during the search [SMS12]. Miraz et al. improved over Tonella’s approach
by proposing a technique that explicitly considers also the internal state of objects to
drive the search [BLM10]. Their TestFul technique implements an hybrid evolutionary
algorithm that alternate global search to cover the internal states of objects, and local
search to satisfy the branches of methods.

The whole test generation technique of Fraser and Arcuri is implemented in EVO-
SUITE, and largely improves the applicability and effectiveness of search based test
generation for object-oriented systems [FA13]. EVOSUITE uses an evolutionary tech-
nique which evolves all the test cases in a test suite at the same time, using a fitness
function that considers all the test goals simultaneously. This is opposed to classic
search based testing techniques which evolve each test case individually towards the
satisfaction of one coverage goal at time. The whole test generation approach allows a
better optimization of the search budget and limits the problem of the abnormal grown
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of the test cases, leading to better scalability and results.
EVOSUITE has been original proposed for branch coverage, and has been extended

to support many different coverage criteria, including statement, (static) data flow cov-
erage and mutation testing [VMGF13, FA14].

Several work extends EVOSUITE to improve its effectiveness for testing classes. EVO-
SUITE integrates a seeding strategy that extract “genetic material” from the application
under test to constitute the initial population of test cases to evolve. This allows EVO-
SUITE to re-use domain specific information extracted from the source code to build the
test cases, easing the generation of test cases that requires complex values [FA12a]. Lo-
cal search, multi-objective fitness functions and dynamic symbolic execution were also
experimented within the technique to improve the ability of EVOSUITE in satisfying
corner cases and test complex classes [GFA13, FAM15, RCV+15]. Finally, EVOSUITE in-
tegrate a strategy to generate regression oracles relying on mutation testing. It executes
the generated test cases on original and mutated programs and calculates a reduced
set of assertions that is sufficient to kill all the mutants [FZ12].

At the state of the art, EVOSUITE generates self-contained test cases for Java more
effectively than any other automated techniques [FA13]. Dynamic Data Flow Testing
relies on a customized version of EVOSUITE to generate test cases.

Hybrid Approaches

Hybrid techniques exploit the synergies between the different test case generation ap-
proaches to obtain better results and performances. Random testing, search based
techniques and symbolic execution are largely complementary in their strengths: Ran-
dom testing and search based techniques scale better, have good performance, and can
quickly identify test cases that execute a significant part of the application behavior.
However, they are not well suited to cover both corner cases and difficult-to-execute
paths. Dually, Symbolic Execution can generate more precise and focused tests, but
with high cost enhanced by the use of constraint solvers.

Hybrid techniques build on the observation that randomized and symbolic tech-
niques can benefit from each other when combined together. Randomized approaches
can quickly explore the application execution space, and symbolic execution can then
be used to reach the few cases left behind.

Majundar and Sen defined a technique that interleaves random and dynamic sym-
bolic execution to explore deeply and widely the program state space [MS07]. Other
techniques enhance search based testing embedding DSE in the search algorithm it-
self. Baars et al. use DSE in the fitness evaluation step for achieving branch cover-
age [BHH+11], while Malburg and Fraser proposed to use small steps of DSE as muta-
tion operator within EVOSUITE [MF11].

Galeotti et al. observed that integrating DSE into a meta-heuristic algorithm affects
the performances of the search at the point that higher coverage in a few corner cases
may come at the price of lower coverage in the general case [GFA13]. Galeotti et al.
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address this problem with an adaptive approach that employ DSE as operator only
whether the coverage problem is determined to be suitable for DSE.

A different line of research combines randomized and symbolic techniques for test-
ing object-oriented systems. This work exploits a randomised approach to derive in-
teresting sequences of method calls, and relies on symbolic execution to determine the
method inputs that maximize the coverage. Inkumsah and Xie use a genetic algorithm
to search for desirable method sequences, and then use symbolic execution to gener-
ate method arguments [IX08]. Garg et al. propose to use a feedback random testing
approach to generate the sequences [GIB+13].

Other hybrid techniques includes application of DSE and genetic algorithms for
strong mutation testing [HJL11], and of search based algorithms to guide path explo-
ration of a DSE technique [XTdHS09].

8.2 Dynamic Data Analysis

With dynamic data analysis we refer to program analysis techniques that analyze data
accesses and information flow dynamically traced during the program execution. This
section discusses the approaches more related to Dynamic Data Flow Testing and Dy-
namic Data Flow Analysis, including both standard dynamic analysis approaches, and
ad hoc solutions developed within more general testing and analysis techniques.

One well known dynamic data analysis problem involves the identification of the
origin of data during execution. Taint analysis tracks the information flow of the input
data. Selected inputs of the applications are labeled (or tainted) with a tag, and at
runtime these labels are propagated such that any new values derived from a tagged
value is marked with a tag as well. Taint analysis inspects the tags to determine whether
a value (or an object) derives from a tainted input or not. Traditional implementations
of taint tracking systems have been defined for different programming languages, and
rely on modifications of the operating system [EKV+05, ZBWKM06], modifications of
the language interpreter [AS10, CF07, EGC+10, GPT+11], access to source code [LC06,
XBS06] or bytecode instrumentation [BK14].

Taint analysis founds a broad range of applications in program analysis and testing.
Taint techniques have been used for privacy testing [EGC+10], fine-grained data se-
curity [AS10, CSL08, MPE+10, RPB+09], detection of code-injection attacks [HOM06,
SAP+11] and enhanced debugging [GLG12].

Taint analysis approaches for privacy testing, data security and code injection at-
tacks labels to data originating from untrusted sources and keep track of the propaga-
tion of the tainted data as the program executes, to detect at runtime when tainted data
are used in illegal ways depending on the scope of the analysis. Other techniques im-
prove debugging and slicing approaches by relying on taint information for identifying
relevant subsets of input sources [KL88, Tip95]. In a context closer to Dynamic Data
Flow Testing, some work uses taint analysis to improve dynamic symbolic execution for
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test generation [GLR09, WWGZ11].
Other dynamic data analyses have been exploited for runtime verification, slicing

and testing techniques.
Dynamic data flow analysis techniques has been proposed by Chen and Low, and

Boujarwah et al. for runtime verification of C++ and Java programs respectively [CL95,
BSAD00]. These techniques monitor data events during a program execution to detect
data flow anomalies, such as usage of variables before their initialization, or killing
definitions of values which were never used before the kill. The techniques have been
implemented in tools for C++ and Java and used to find simple anomalies. They share
the idea of Dynamic Data Flow Analysis of using runtime information to perform data
flow analysis, but they focus on a different problem and employ a simpler strategies to
analyze the program, without considering the nested state of objects.

Dynamically augmented program slicing techniques leverages data dependencies
observed at runtime by dynamic data analysis that tracks definition, uses and definition
use pairs [KL88, Tip95]. These dynamic analyses track the occurrence of variable reads
and writes, at the intra-procedural level, and have not been extended to either inter-
procedural reaching analysis or contextual data flow analysis like DReaDs.

Dynamic data analysis is used in the context of testing to synthesize unit test cases
from system ones [SAPE05, ECDD06]. These approaches run system-wide tests, and
synthetize unit test cases by suitably identifying and tailor components and behaviors.
Dynamic data analysis is used to capture dynamic information about the fields that are
read or written during the execution to decide which parts of the program states have
to be extracted and reproduced in the automatically generated unit tests.

Lienhard et al. and Zheng et al. adapt dynamic data analysis to build memory
graphs similar to the one implemented in Dynamic Data Flow Testing in order to support
program comprehension and advanced debugging functionality [ZZ02, LGN08].



Chapter 9

Conclusions

This thesis presents Dynamic Data Flow Testing, a novel approach to generate inter-
procedural test cases for object-oriented software systems. Several studies have showed
the effectiveness of data flow testing for exercising the state based interactions between
methods and objects, but the applicability of data flow testing is limited by the difficulty
of static data flow analysis to deal with the dynamic features of software systems.

In this work, we propose Dynamic Data Flow Analysis, a dynamic implementation
of data flow analysis that computes sound data flow information while executing a pro-
gram. By comparing data flow information collected with classic static analysis with
information observed dynamically, we empirical observed that the data flow informa-
tion computed with classic analysis of the source code misses a lot of information that
corresponds to relevant behaviors that shall be tested.

In view of these results, we propose Dynamic Data Flow Testing, which exploits
Dynamic Data Flow Analysis to identify precise and relevant data flow test objectives
for a program under test. Dynamic Data Flow Testing combines dynamic analysis, static
reasoning and test case generation. It uses Dynamic Data Flow Analysis to compute
precise data flow information for a program under test, and processes the dynamic
information to infer yet-to-be-executed test objectives, which are finally used by a test
generation approach to produce new test cases. The test cases generated by Dynamic
Data Flow Testing augment a suite with new executions that exercise the complex state
based interactions between objects.

We implemented Dynamic Data Flow Testing in the DynaFlow prototype tool that
generates JUnit test cases for Java programs. Our experiments indicate that DynaFlow
generates test cases that reveal failures that could go otherwise undetected with state
of the art structural and data flow testing approaches.

This work could represent the first step towards a new testing paradigm, which
exploits dynamic information observed at runtime to effectively exercise interesting
states and interactions that could cause subtle failures of programs.
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9.1 Contributions

The main contribution of this thesis is an approach for automated data flow testing
that exploits dynamically computed information to steer the generation of test cases
towards relevant method interactions. The approach takes advantage of a dynamic
implementation of data flow analysis to identify precise data interactions to use as test
objectives. By exploiting the synergies between dynamic analysis, static reasoning and
test case generation, we propose a new model of structural testing, which iteratively
discovers new test objectives while testing the application.

The thesis makes the following specific contributions:

• It proposes a dynamic implementation of data flow analysis for object-oriented
systems to compute sound data flow information of class state variables. Dy-
namic Data Flow Analysis (DReaDs) computes reaching definitions and reachable
uses of the class state variables dynamically on the program traces. DReaDs cap-
tures memory events at runtime, and maps them to the involved class state vari-
ables by exploiting a model of the references between objects in memory. This
allows the analysis to resolve aliasing and pointer references, computing a sound
data flow information.

• It provides a quantitative analysis of the limits of the current data flow test-
ing approaches based on static data flow analysis. By comparing dynamic
data flow analysis with static data flow analysis, we empirically shown that the
under-approximated static analyses commonly used within data flow testing ap-
proaches compute a set of data flow relations that badly approximate the set of
feasible data flow elements. This negatively affects the effectiveness of data flow
testing techniques based on static analysis, and ground our idea of using dynamic
analysis to steer the test generation.

• It proposes Dynamic Data Flow Testing, a testing technique for systematically
generating effective test cases for object-oriented systems leveraging dy-
namic data flow information computed by Dynamic Data Flow Analysis. Dy-
namic Data Flow Testing re-thinks data flow testing, as it defines a new paradigm
that employs dynamic analysis to identify the test objectives for test case gen-
eration and selection. The technique exploits the possible interplays between
dynamic analysis, static reasoning and automated test case generation to test the
state based interactions of object-oriented systems.

• It presents empirical evidence of the effectiveness of the proposed approach.
The Dynamic Data Flow Testing approach was implemented in the prototype tool
DynaFlow for generating test cases for Java programs. DynaFlow has been used
to generate test suites on several test subjects. The experiments validate the
effectiveness of the Dynamic Data Flow Testing approach with respect to both
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structural testing approaches based on the coverage of conditionals, and classic
data flow testing techniques based on static analysis.

9.2 Future Directions

The work presented in this thesis opens several research problems. Dynamic Data Flow
Testing constitutes the first step towards exploiting dynamic analysis techniques for
generating test cases. Moreover, the Dynamic Data Flow Analysis technique could be
applied to other problems beside data flow testing. We foresee the following future
research directions:

• Further exploiting the synergies between Dynamic Data Flow Analysis and
automated test case generation. The current implementation of Dynamic Data
Flow Testing exploits Dynamic Data Flow Analysis to identify the test objectives
and steer the test generation. Additional information collected using Dynamic
Data Flow Analysis could further improve the automated test case generation.
For instance, Dynamic Data Flow Analysis can report detailed coverage informa-
tion of basic blocks and combinations of methods, identifying which blocks and
combination of methods are not executed yet, and thus require more attention
from the test generator. Dynamic Data Flow Analysis can also detect which defini-
tions were never paired to any use during the executions, and used to prioritize
the goals for test generation.

• Extending Dynamic Data Flow Testing to tackle the oracle generation prob-
lem. The current implementation of Dynamic Data Flow Testing generates test
cases that relies on implicit oracles to expose faults. However, the informa-
tion collected with Dynamic Data Flow Analysis could be exploited to either help
testers in designing an effective test oracle, or automatically generating regres-
sion ones. We believe that data flow information can be useful for generating test
oracles, and that it is interesting to understand how it can be exploited to tackle
the problem of automated oracles generation.

• Applying the Dynamic Data Flow Testing technique and testing model to
dynamic-typed programming languages. The problems of static analysis wit-
nessed in this thesis are exacerbated in the context of programming languages
that relies on a full dynamic typing mechanism. For instance, Python is more and
more used to develop complex object-oriented applications with an very high
degree of dynamism. These application are generally difficult to test systemati-
cally, since their behavior strongly depends on their runtime. Since Dynamic Data
Flow Testing is particularly effective on programs which behavior is strongly dy-
namic, applying Dynamic Data Flow Testing on dynamically typed programming
languages could ease the testing of these systems.
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