16,904 research outputs found

    Multimodal Classification of Urban Micro-Events

    Get PDF
    In this paper we seek methods to effectively detect urban micro-events. Urban micro-events are events which occur in cities, have limited geographical coverage and typically affect only a small group of citizens. Because of their scale these are difficult to identify in most data sources. However, by using citizen sensing to gather data, detecting them becomes feasible. The data gathered by citizen sensing is often multimodal and, as a consequence, the information required to detect urban micro-events is distributed over multiple modalities. This makes it essential to have a classifier capable of combining them. In this paper we explore several methods of creating such a classifier, including early, late, hybrid fusion and representation learning using multimodal graphs. We evaluate performance on a real world dataset obtained from a live citizen reporting system. We show that a multimodal approach yields higher performance than unimodal alternatives. Furthermore, we demonstrate that our hybrid combination of early and late fusion with multimodal embeddings performs best in classification of urban micro-events

    A geo-temporal information extraction service for processing descriptive metadata in digital libraries

    Get PDF
    In the context of digital map libraries, resources are usually described according to metadata records that define the relevant subject, location, time-span, format and keywords. On what concerns locations and time-spans, metadata records are often incomplete or they provide information in a way that is not machine-understandable (e.g. textual descriptions). This paper presents techniques for extracting geotemporal information from text, using relatively simple text mining methods that leverage on a Web gazetteer service. The idea is to go from human-made geotemporal referencing (i.e. using place and period names in textual expressions) into geo-spatial coordinates and time-spans. A prototype system, implementing the proposed methods, is described in detail. Experimental results demonstrate the efficiency and accuracy of the proposed approaches

    A study into annotation ranking metrics in geo-tagged image corpora

    Get PDF
    Community contributed datasets are becoming increasingly common in automated image annotation systems. One important issue with community image data is that there is no guarantee that the associated metadata is relevant. A method is required that can accurately rank the semantic relevance of community annotations. This should enable the extracting of relevant subsets from potentially noisy collections of these annotations. Having relevant, non heterogeneous tags assigned to images should improve community image retrieval systems, such as Flickr, which are based on text retrieval methods. In the literature, the current state of the art approach to ranking the semantic relevance of Flickr tags is based on the widely used tf-idf metric. In the case of datasets containing landmark images, however, this metric is inefficient due to the high frequency of common landmark tags within the data set and can be improved upon. In this paper, we present a landmark recognition framework, that provides end-to-end automated recognition and annotation. In our study into automated annotation, we evaluate 5 alternate approaches to tf-idf to rank tag relevance in community contributed landmark image corpora. We carry out a thorough evaluation of each of these ranking metrics and results of this evaluation demonstrate that four of these proposed techniques outperform the current commonly-used tf-idf approach for this task

    Contextual Attention Recurrent Architecture for Context-aware Venue Recommendation

    Get PDF
    Venue recommendation systems aim to effectively rank a list of interesting venues users should visit based on their historical feedback (e.g. checkins). Such systems are increasingly deployed by Location-based Social Networks (LBSNs) such as Foursquare and Yelp to enhance their usefulness to users. Recently, various RNN architectures have been proposed to incorporate contextual information associated with the users' sequence of checkins (e.g. time of the day, location of venues) to effectively capture the users' dynamic preferences. However, these architectures assume that different types of contexts have an identical impact on the users' preferences, which may not hold in practice. For example, an ordinary context such as the time of the day reflects the user's current contextual preferences, whereas a transition context - such as a time interval from their last visited venue - indicates a transition effect from past behaviour to future behaviour. To address these challenges, we propose a novel Contextual Attention Recurrent Architecture (CARA) that leverages both sequences of feedback and contextual information associated with the sequences to capture the users' dynamic preferences. Our proposed recurrent architecture consists of two types of gating mechanisms, namely 1) a contextual attention gate that controls the influence of the ordinary context on the users' contextual preferences and 2) a time- and geo-based gate that controls the influence of the hidden state from the previous checkin based on the transition context. Thorough experiments on three large checkin and rating datasets from commercial LBSNs demonstrate the effectiveness of our proposed CARA architecture by significantly outperforming many state-of-the-art RNN architectures and factorisation approaches

    A Survey of Volunteered Open Geo-Knowledge Bases in the Semantic Web

    Full text link
    Over the past decade, rapid advances in web technologies, coupled with innovative models of spatial data collection and consumption, have generated a robust growth in geo-referenced information, resulting in spatial information overload. Increasing 'geographic intelligence' in traditional text-based information retrieval has become a prominent approach to respond to this issue and to fulfill users' spatial information needs. Numerous efforts in the Semantic Geospatial Web, Volunteered Geographic Information (VGI), and the Linking Open Data initiative have converged in a constellation of open knowledge bases, freely available online. In this article, we survey these open knowledge bases, focusing on their geospatial dimension. Particular attention is devoted to the crucial issue of the quality of geo-knowledge bases, as well as of crowdsourced data. A new knowledge base, the OpenStreetMap Semantic Network, is outlined as our contribution to this area. Research directions in information integration and Geographic Information Retrieval (GIR) are then reviewed, with a critical discussion of their current limitations and future prospects

    Automatic tagging and geotagging in video collections and communities

    Get PDF
    Automatically generated tags and geotags hold great promise to improve access to video collections and online communi- ties. We overview three tasks offered in the MediaEval 2010 benchmarking initiative, for each, describing its use scenario, definition and the data set released. For each task, a reference algorithm is presented that was used within MediaEval 2010 and comments are included on lessons learned. The Tagging Task, Professional involves automatically matching episodes in a collection of Dutch television with subject labels drawn from the keyword thesaurus used by the archive staff. The Tagging Task, Wild Wild Web involves automatically predicting the tags that are assigned by users to their online videos. Finally, the Placing Task requires automatically assigning geo-coordinates to videos. The specification of each task admits the use of the full range of available information including user-generated metadata, speech recognition transcripts, audio, and visual features

    Integrating memory context into personal information re-finding

    Get PDF
    Personal information archives are emerging as a new challenge for information retrieval (IR) techniques. The user’s memory plays a greater role in retrieval from person archives than from other more traditional types of information collection (e.g. the Web), due to the large overlap of its content and individual human memory of the captured material. This paper presents a new analysis on IR of personal archives from a cognitive perspective. Some existing work on personal information management (PIM) has begun to employ human memory features into their IR systems. In our work we seek to go further, we assume that for IR in PIM system terms can be weighted not only by traditional IR methods, but also taking the user’s recall reliability into account. We aim to develop algorithms that combine factors from both the system side and the user side to achieve more effective searching. In this paper, we discuss possible applications of human memory theories for this algorithm, and present results from a pilot study and a proposed model of data structure for the HDMs achieves
    corecore