17,995 research outputs found

    ELASTICITY: Topological Characterization of Robustness in Complex Networks

    Full text link
    Just as a herd of animals relies on its robust social structure to survive in the wild, similarly robustness is a crucial characteristic for the survival of a complex network under attack. The capacity to measure robustness in complex networks defines the resolve of a network to maintain functionality in the advent of classical component failures and at the onset of cryptic malicious attacks. To date, robustness metrics are deficient and unfortunately the following dilemmas exist: accurate models necessitate complex analysis while conversely, simple models lack applicability to our definition of robustness. In this paper, we define robustness and present a novel metric, elasticity- a bridge between accuracy and complexity-a link in the chain of network robustness. Additionally, we explore the performance of elasticity on Internet topologies and online social networks, and articulate results

    Robustness and edge addition strategy of air transport networks : a case study of 'the Belt and Road'

    Get PDF
    Air transportation is of great importance in "the Belt and Road" (the B&R) region. The achievement of the B&R initiative relies on the availability, reliability, and safety of air transport infrastructure. A fundamental step is to find the critical elements in network performance. Considering the uneven distributions of population and economy, the current literature focusing on centrality measures in unweighted networks is not sufficient in the B&R region. By differentiating power and centrality in the B&R region, our analysis leads to two conclusions: (1) Deactivating powerful nodes causes a larger decrease in efficiency than deactivating central nodes. This indicates that powerful nodes in the B&R region are more critical than central nodes for network robustness. (2) Strategically adding edges between high powerful and low powerful nodes can enhance the network's ability to exchange resources efficiently. These findings can be used to adjust government policies for air transport configuration to achieve the best network performance and the most cost effective

    Security for the Industrial IoT: The Case for Information-Centric Networking

    Full text link
    Industrial production plants traditionally include sensors for monitoring or documenting processes, and actuators for enabling corrective actions in cases of misconfigurations, failures, or dangerous events. With the advent of the IoT, embedded controllers link these `things' to local networks that often are of low power wireless kind, and are interconnected via gateways to some cloud from the global Internet. Inter-networked sensors and actuators in the industrial IoT form a critical subsystem while frequently operating under harsh conditions. It is currently under debate how to approach inter-networking of critical industrial components in a safe and secure manner. In this paper, we analyze the potentials of ICN for providing a secure and robust networking solution for constrained controllers in industrial safety systems. We showcase hazardous gas sensing in widespread industrial environments, such as refineries, and compare with IP-based approaches such as CoAP and MQTT. Our findings indicate that the content-centric security model, as well as enhanced DoS resistance are important arguments for deploying Information Centric Networking in a safety-critical industrial IoT. Evaluation of the crypto efforts on the RIOT operating system for content security reveal its feasibility for common deployment scenarios.Comment: To be published at IEEE WF-IoT 201
    corecore