147 research outputs found

    Design and Performance Analysis of Genetic Algorithms for Topology Control Problems

    Full text link
    In this dissertation, we present a bio-inspired decentralized topology control mechanism, called force-based genetic algorithm (FGA), where a genetic algorithm (GA) is run by each autonomous mobile node to achieve a uniform spread of mobile nodes and to provide a fully connected network over an unknown area. We present a formal analysis of FGA in terms of convergence speed, uniformity at area coverage, and Lyapunov stability theorem. This dissertation emphasizes the use of mobile nodes to achieve a uniform distribution over an unknown terrain without a priori information and a central control unit. In contrast, each mobile node running our FGA has to make its own movement direction and speed decisions based on local neighborhood information, such as obstacles and the number of neighbors, without a centralized control unit or global knowledge. We have implemented simulation software in Java and developed four different testbeds to study the effectiveness of different GA-based topology control frameworks for network performance metrics including node density, speed, and the number of generations that GAs run. The stochastic behavior of FGA, like all GA-based approaches, makes it difficult to analyze its convergence speed. We built metrically transitive homogeneous and inhomogeneous Markov chain models to analyze the convergence of our FGA with respect to the communication ranges of mobile nodes and the total number of nodes in the system. The Dobrushin contraction coefficient of ergodicity is used for measuring convergence speed for homogeneous and inhomogeneous Markov chain models of our FGA. Furthermore, convergence characteristic analysis helps us to choose the nearoptimal values for communication range, the number of mobile nodes, and the mean node degree before sending autonomous mobile nodes to any mission. Our analytical and experimental results show that our FGA delivers promising results for uniform mobile node distribution over unknown terrains. Since our FGA adapts to local environment rapidly and does not require global network knowledge, it can be used as a real-time topology controller for commercial and military applications

    Towards a scalable routing approach for mobile ad-hoc networks

    Get PDF
    The Internet is evolving towards a two-fold architecture that will comprise of traditional infrastructure based networks as well as emerging self organised autonomic peripheral networks. Such Internet peripheral networks are being termed as the Internet of things (IoT) whereby smart objects and devices will be connected together in a fully distributed fashion to provide ubiquitous services through pervasive networking. Mobile Ad hoc Networks (MANETs) is regarded as one of the pervasive self-organised networks that will play a major role in autonomic future internet communication. There are several well- known challenges to be addressed in order to enable MANET deployments of large islands of interconnected smart devices. Therefore, in this paper, we present a mathematical model based analysis of various well-known routing protocols for MANETs in order to determine the scalability of these protocols. This paper analyses the scalability of the routing protocols with respect to routing overhead required by approaches while also considering the packet delivery latency, which is an important Quality of Service (QoS) metric

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Congestion Control in Mobile Ad Hoc Network using modified acknowledgement with secure channel

    Get PDF
    The mobile ad hoc network is self-configuring and dynamic in nature. Due to its dynamic topology node can join or leave any time and each node behaves as router or host which can deliver the packets from source to destination. Due to the heavy traffic load over network congestion occur. To avoid the congestion on network various congestion control mechanism has been developed but in this we use modified-ACK based scheme for node authentication in AODV protocol. The simulation of our proposed work is done on network simulator NS-2.34 and comparative analysis of our proposed methodology is done using performance metrics such as packet delivery ratio, throughput, end-end delay average jitter and routing load.   Keywords MANET, Congestion Control, AODV, ACK, PDR, Network Simulato

    ANTMANET: a novel routing protocol for mobile ad-hoc networks based on ant colony optimisation

    Get PDF
    The core aim of this research is to present “ANTMANET” a novel routing protocol for Mobile Ad-Hoc networks. The proposed protocol aims to reduce the network overhead and delay introduced by node mobility in MANETs. There are two techniques embedded in this protocol, the “Local Zone” technique and the “North Neighbour” Table. They take an advantage of the fact that the nodes can obtain their location information by any means to reduce the network overhead during the route discovery phase and reduced the size of the routing table to guarantee faster convergence. ANTMANET is a hybrid Ant Colony Optimisation-based (ACO) routing protocol. ACO is a Swarm Intelligence (SI) routing algorithm that is well known for its high-quality performance compared to other distributed routing algorithms such as Link State and Distance Vector. ANTMANET has been benchmarked in various scenarios against the ACO routing protocol ANTHOCNET and several standard routing protocols including the Ad-Hoc On-Demand Distance Vector (AODV), Landmark Ad-Hoc Routing (LANMAR), and Dynamic MANET on Demand (DYMO). Performance metrics such as overhead, end-to-end delay, throughputs and jitter were used to evaluate ANTMANET performance. Experiments were performed using the QualNet simulator. A benchmark test was conducted to evaluate the performance of an ANTMANET network against an ANTHOCNET network, with both protocols benchmarked against AODV as an established MANET protocol. ANTMANET has demonstrated a notable performance edge when the core algorithm has been optimised using the novel adaptation method that is proposed in this thesis. Based on the simulation results, the proposed protocol has shown 5% less End-to-End delay than ANTHOCNET. In regard to network overhead, the proposed protocol has shown 20% less overhead than ANTHOCNET. In terms of comparative throughputs ANTMANET in its finest performance has delivered 25% more packets than ANTHOCNET. The overall validation results indicate that the proposed protocol was successful in reducing the network overhead and delay in high and low mobility speeds when compared with the AODV, DMO and LANMAR protocols. ANTMANET achieved at least a 45% less delay than AODV, 60% less delay than DYMO and 55% less delay than LANMAR. In terms of throughputs; ANTMANET in its best performance has delivered 35% more packets than AODV, 40% more than DYMO and 45% more than LANMAR. With respect to the network overhead results, ANTMANET has illustrated 65% less overhead than AODV, 70% less than DYMO and 60 % less than LANMAR. Regarding the Jitter, ANTMANET at its best has shown 60% less jitter than AODV, 55% jitter less than DYMO and 50% less jitter than LANMAR
    • …
    corecore