2,194 research outputs found

    Learning large margin multiple granularity features with an improved siamese network for person re-identification

    Get PDF
    Person re-identification (Re-ID) is a non-overlapping multi-camera retrieval task to match different images of the same person, and it has become a hot research topic in many fields, such as surveillance security, criminal investigation, and video analysis. As one kind of important architecture for person re-identification, Siamese networks usually adopt standard softmax loss function, and they can only obtain the global features of person images, ignoring the local features and the large margin for classification. In this paper, we design a novel symmetric Siamese network model named Siamese Multiple Granularity Network (SMGN), which can jointly learn the large margin multiple granularity features and similarity metrics for person re-identification. Firstly, two branches for global and local feature extraction are designed in the backbone of the proposed SMGN model, and the extracted features are concatenated together as multiple granularity features of person images. Then, to enhance their discriminating ability, the multiple channel weighted fusion (MCWF) loss function is constructed for the SMGN model, which includes the verification loss and identification loss of the training image pair. Extensive comparative experiments on four benchmark datasets (CUHK01, CUHK03, Market-1501 and DukeMTMC-reID) show the effectiveness of our proposed method and its performance outperforms many state-of-the-art methods

    Deep Metric Learning Meets Deep Clustering: An Novel Unsupervised Approach for Feature Embedding

    Full text link
    Unsupervised Deep Distance Metric Learning (UDML) aims to learn sample similarities in the embedding space from an unlabeled dataset. Traditional UDML methods usually use the triplet loss or pairwise loss which requires the mining of positive and negative samples w.r.t. anchor data points. This is, however, challenging in an unsupervised setting as the label information is not available. In this paper, we propose a new UDML method that overcomes that challenge. In particular, we propose to use a deep clustering loss to learn centroids, i.e., pseudo labels, that represent semantic classes. During learning, these centroids are also used to reconstruct the input samples. It hence ensures the representativeness of centroids - each centroid represents visually similar samples. Therefore, the centroids give information about positive (visually similar) and negative (visually dissimilar) samples. Based on pseudo labels, we propose a novel unsupervised metric loss which enforces the positive concentration and negative separation of samples in the embedding space. Experimental results on benchmarking datasets show that the proposed approach outperforms other UDML methods.Comment: Accepted in BMVC 202

    Generative Adversarial Networks (GANs): Challenges, Solutions, and Future Directions

    Full text link
    Generative Adversarial Networks (GANs) is a novel class of deep generative models which has recently gained significant attention. GANs learns complex and high-dimensional distributions implicitly over images, audio, and data. However, there exists major challenges in training of GANs, i.e., mode collapse, non-convergence and instability, due to inappropriate design of network architecture, use of objective function and selection of optimization algorithm. Recently, to address these challenges, several solutions for better design and optimization of GANs have been investigated based on techniques of re-engineered network architectures, new objective functions and alternative optimization algorithms. To the best of our knowledge, there is no existing survey that has particularly focused on broad and systematic developments of these solutions. In this study, we perform a comprehensive survey of the advancements in GANs design and optimization solutions proposed to handle GANs challenges. We first identify key research issues within each design and optimization technique and then propose a new taxonomy to structure solutions by key research issues. In accordance with the taxonomy, we provide a detailed discussion on different GANs variants proposed within each solution and their relationships. Finally, based on the insights gained, we present the promising research directions in this rapidly growing field.Comment: 42 pages, Figure 13, Table

    Socially Constrained Structural Learning for Groups Detection in Crowd

    Full text link
    Modern crowd theories agree that collective behavior is the result of the underlying interactions among small groups of individuals. In this work, we propose a novel algorithm for detecting social groups in crowds by means of a Correlation Clustering procedure on people trajectories. The affinity between crowd members is learned through an online formulation of the Structural SVM framework and a set of specifically designed features characterizing both their physical and social identity, inspired by Proxemic theory, Granger causality, DTW and Heat-maps. To adhere to sociological observations, we introduce a loss function (G-MITRE) able to deal with the complexity of evaluating group detection performances. We show our algorithm achieves state-of-the-art results when relying on both ground truth trajectories and tracklets previously extracted by available detector/tracker systems

    Boosting Standard Classification Architectures Through a Ranking Regularizer

    Full text link
    We employ triplet loss as a feature embedding regularizer to boost classification performance. Standard architectures, like ResNet and Inception, are extended to support both losses with minimal hyper-parameter tuning. This promotes generality while fine-tuning pretrained networks. Triplet loss is a powerful surrogate for recently proposed embedding regularizers. Yet, it is avoided due to large batch-size requirement and high computational cost. Through our experiments, we re-assess these assumptions. During inference, our network supports both classification and embedding tasks without any computational overhead. Quantitative evaluation highlights a steady improvement on five fine-grained recognition datasets. Further evaluation on an imbalanced video dataset achieves significant improvement. Triplet loss brings feature embedding characteristics like nearest neighbor to classification models. Code available at \url{http://bit.ly/2LNYEqL}.Comment: WACV 2020 Camera ready + supplementary materia

    A Survey on Metric Learning for Feature Vectors and Structured Data

    Full text link
    The need for appropriate ways to measure the distance or similarity between data is ubiquitous in machine learning, pattern recognition and data mining, but handcrafting such good metrics for specific problems is generally difficult. This has led to the emergence of metric learning, which aims at automatically learning a metric from data and has attracted a lot of interest in machine learning and related fields for the past ten years. This survey paper proposes a systematic review of the metric learning literature, highlighting the pros and cons of each approach. We pay particular attention to Mahalanobis distance metric learning, a well-studied and successful framework, but additionally present a wide range of methods that have recently emerged as powerful alternatives, including nonlinear metric learning, similarity learning and local metric learning. Recent trends and extensions, such as semi-supervised metric learning, metric learning for histogram data and the derivation of generalization guarantees, are also covered. Finally, this survey addresses metric learning for structured data, in particular edit distance learning, and attempts to give an overview of the remaining challenges in metric learning for the years to come.Comment: Technical report, 59 pages. Changes in v2: fixed typos and improved presentation. Changes in v3: fixed typos. Changes in v4: fixed typos and new method

    Composite Correlation Quantization for Efficient Multimodal Retrieval

    Full text link
    Efficient similarity retrieval from large-scale multimodal database is pervasive in modern search engines and social networks. To support queries across content modalities, the system should enable cross-modal correlation and computation-efficient indexing. While hashing methods have shown great potential in achieving this goal, current attempts generally fail to learn isomorphic hash codes in a seamless scheme, that is, they embed multiple modalities in a continuous isomorphic space and separately threshold embeddings into binary codes, which incurs substantial loss of retrieval accuracy. In this paper, we approach seamless multimodal hashing by proposing a novel Composite Correlation Quantization (CCQ) model. Specifically, CCQ jointly finds correlation-maximal mappings that transform different modalities into isomorphic latent space, and learns composite quantizers that convert the isomorphic latent features into compact binary codes. An optimization framework is devised to preserve both intra-modal similarity and inter-modal correlation through minimizing both reconstruction and quantization errors, which can be trained from both paired and partially paired data in linear time. A comprehensive set of experiments clearly show the superior effectiveness and efficiency of CCQ against the state of the art hashing methods for both unimodal and cross-modal retrieval

    Joint segmentation of multivariate time series with hidden process regression for human activity recognition

    Full text link
    The problem of human activity recognition is central for understanding and predicting the human behavior, in particular in a prospective of assistive services to humans, such as health monitoring, well being, security, etc. There is therefore a growing need to build accurate models which can take into account the variability of the human activities over time (dynamic models) rather than static ones which can have some limitations in such a dynamic context. In this paper, the problem of activity recognition is analyzed through the segmentation of the multidimensional time series of the acceleration data measured in the 3-d space using body-worn accelerometers. The proposed model for automatic temporal segmentation is a specific statistical latent process model which assumes that the observed acceleration sequence is governed by sequence of hidden (unobserved) activities. More specifically, the proposed approach is based on a specific multiple regression model incorporating a hidden discrete logistic process which governs the switching from one activity to another over time. The model is learned in an unsupervised context by maximizing the observed-data log-likelihood via a dedicated expectation-maximization (EM) algorithm. We applied it on a real-world automatic human activity recognition problem and its performance was assessed by performing comparisons with alternative approaches, including well-known supervised static classifiers and the standard hidden Markov model (HMM). The obtained results are very encouraging and show that the proposed approach is quite competitive even it works in an entirely unsupervised way and does not requires a feature extraction preprocessing step
    corecore