1,384 research outputs found

    Compact Structural Test Generation for Analog Macros

    Get PDF
    A structural, fault-model based methodology for the generation of compact high-quality test sets for analog macros is presented. Results are shown for an IV-converter macro design. Parameters of so-called test configurations are optimized for detection of faults in a fault-list and an optimal selection algorithm results in determining the best test set. The distribution of the results along the parameter-axes of the test configurations is investigated to identify a collapsed high-quality test se

    Mixed-Signal Testability Analysis for Data-Converter IPs

    Get PDF
    In this paper, a new procedure to derive testability measures is presented. Digital testability can be calculated by means of probability, while in analog it is possible to calculate testability using impedance values. Although attempts have been made to reach compatibility, matching was somewhat arbitrary and therefore not necessarily compatible. The concept of the new approach is that digital and analog can be integrated in a more consistent way. More realistic testability figures are obtained, which makes testability of true mixed-signal systems and circuits feasible. To verify the results, our method is compared with a sensitivity analysis, for a simple 3-bit ADC

    Index to NASA Tech Briefs, 1975

    Get PDF
    This index contains abstracts and four indexes--subject, personal author, originating Center, and Tech Brief number--for 1975 Tech Briefs

    Preprototype nitrogen supply subsystem development

    Get PDF
    The design and development of a test stand for the Nitrogen Generation Module (NGM) and a series of tests which verified its operation and performance capability are described. Over 900 hours of parametric testing were achieved. The results from this testing were then used to design an advanced NGM and a self contained, preprototype Nitrogen Supply Subsystem. The NGM consists of three major components: nitrogen generation module, pressure controller and hydrazine storage tank and ancillary components. The most important improvement is the elimination of all sealing surfaces, achieved with a total welded or brazed construction. Additionally, performance was improved by increasing hydrogen separating capability by 20% with no increase in overall packaging size

    Integration of a Digital Built-in Self-Test for On-Chip Memories

    Get PDF
    The ability of testing on-chip circuitry is extremely essential to ASIC implemen- tations today. However, providing functional tests and verification for on-chip (embedded) memories always poses a huge number of challenges to the designer. Therefore, a co-existing automated built-in self-test block with the Design Under Test (DUT) seems crucial to provide comprehensive, efficient and robust testing features. The target DUT of this thesis project is the state-of-the-arts Ultra Low Power (ULP) dual-port SRAMs designed in ASIC group of EIT department at Lund University. This thesis starts from system RTL modeling and verification from an earlier project, and then goes through ASIC design phase in 28 nm FD-SOI technology from ST-Microelectronics. All scripts during the ASIC design phase are developed in TCL. This design is implemented with multiple power domains (using CPF approach and introducing level-shifters at crossing-points between domains) and multiple clock sources in order to make it possible to perform various measurements with a high reliability on different flavours of a dual-port SRAM.This design is able to reduce dramatically the complexity of verification and measurement to integrated memories. This digital integrated circuit (IC) is developed as an application-specific IC (ASIC) chip for functional verification of integrated memories and measuring them in different aspects such as power consumption. The design is automated and capable of being reconfigured easily in terms of required actions and data for testing on-chip memories. Put it in other words, this design has automated and optimized the generation of what data to be stored on which location on memories as well as how they have been treated and interpreted later on. For instance, it refreshes and delivers different operation modes and working patterns to the entire test system in order to fully utilize integrated memories, of which such an automation is instructed by the stimuli to the chip. Besides, the pattern generation of the stimuli is implemented on MATLAB in an automated way. Due to constant advancements in chip manufacturing technology, more devices are squeezed into the same silicon area. Meaning that in order to monitor more internal signals introduced by the increased complexity of the circuits, more dedicated input/output ports (the physical interface between the chip internal signals and outside world) are required, that makes the chip bonding and testing in the future difficult and time-consuming. Additionally, memories usually have a bigger number of pins for signal reactions than other circuit blocks do, the method of dealing with so many pins should also be taken into account. Thus, a few techniques are adopted in this system to assist the designers deal with all mentioned issues. Once the ASIC chip has been fabricated (manufactured) and bonded, the on-chip memories can be tested directly on a printed circuit board in a simple and flexible way: Once test instruction input is loaded into the chip, the system starts to update the system settings and then to generate the internal configurations(parameters) so that all different operations, modes or instructions related to memory testing are automatically processed

    An Enhanced Evolutionary Technique for the Generation of Compact Reconfigurable Scan-Network Tests

    Get PDF
    Nowadays many Integrated Systems embed auxiliary on-chip instruments whose function is to perform test, debug, calibration, configuration, etc. The growing complexity and the increasing number of these instruments have led to new solutions for their access and control, such as the IEEE 1687 standard. The standard introduces an infrastructure composed of scan chains incorporating configurable elements for accessing the instruments in a flexible manner. Such an infrastructure is known as Reconfigurable Scan Network or RSN. Since permanent faults affecting the circuitry can cause malfunction, i.e., inappropriate behaviour, detecting them is of utmost importance. This paper addresses the issue of generating effective sequences for testing the reconfigurable elements within RSNs using evolutionary computation. Test configurations are extracted with automatic test pattern generation (ATPG) and used to guide the evolution. Postprocessing techniques are proposed to improve the evolutionary fittest solution. Results on a standard set of benchmark networks show up to 27% reduced test time with respect to test generation based on RSN exploratio

    A fault-tolerant multiprocessor architecture for aircraft, volume 1

    Get PDF
    A fault-tolerant multiprocessor architecture is reported. This architecture, together with a comprehensive information system architecture, has important potential for future aircraft applications. A preliminary definition and assessment of a suitable multiprocessor architecture for such applications is developed

    Custom Integrated Circuits

    Get PDF
    Contains reports on six research projects.U.S. Air Force - Office of Scientific Research (Grant AFOSR-86-0164)U.S. Navy - Office of Naval Research (Contract N00014-80-C-0622)National Science Foundation (Grant ECS-83-10941
    corecore