7 research outputs found

    Utilización de watermarking para seguridad en la nube: el caso de las imágenes médicas

    Get PDF
    En los últimos años, acompañando el rápido avance de las telecomunicaciones se ha desarrollado la telemedicina por medio de la cual los médicos pueden transferir y compartir los datos digitales de los pacientes en forma remota para determinar un diagnóstico definitivo. Por otra parte, actualmente la tendencia es llevar la información médica que se almacenaba en el propio centro de salud a la nube siendo esencial en estos casos proteger los datos médicos intercambiados. En las plataformas de Cloud Computing, la seguridad es todavía un problema importante a resolver. Se debe garantizar que las imágenes médicas se puedan compartir en forma segura preservándolas de cualquier intento de distorsión, como así también proporcionar privacidad en las cadenas de datos de las historias clínicas de salud o Electronic Health Records (EHR). Una alternativa de solución es la inserción de marcas de agua en las imágenes médicas, técnica conocida como watermarking, cuya aplicación en imágenes digitales empezó hace unas décadas. En este trabajo se propone que acompañe a las clásicas técnicas criptográficas para perfeccionar la seguridad en la nube.Eje: Seguridad Informática.Red de Universidades con Carreras en Informática (RedUNCI

    Computer Methods and Programs in Biomedicine XXX (2013) XXX‐XXX 1 Effective Management of Medical Information through ROI-Lossless Fragile Image Watermarking Technique

    Get PDF
    In this article, we have proposed a blind, fragile and Region of Interest (ROI) lossless medical image watermarking (MIW) technique, providing an all-in-one solution tool to various medical data distribution and management issues like security, content authentication, safe archiving, controlled access retrieval and captioning etc. The proposed scheme combines lossless data compression and encryption technique to embed electronic health record (EHR)/DICOM metadata, image hash, indexing keyword, doctor identification code and tamper localization information in the medical images. Extensive experiments (both subjective and objective) were carried out to evaluate performance of the proposed MIW technique. The findings offer suggestive evidence that the proposed MIW scheme is an effective all-in-one solution tool to various issues of medical information management domain. Moreover, given its relative simplicity, the proposed scheme can be applied to the medical images to serve in many medical applications concerned with privacy protection, safety, and management etc. Keywords

    WATERMARKING FOR ENFORCING SECURED MEDICAL IMAGE ACCESS

    Get PDF
    ABSTRACT In this paper, we propose a joint encryption/watermarking system for the purpose of protecting medical images. This system is based on an approach which combines a substitutive watermarking algorithm, the quantization index modulation, with an encryption algorithm: a stream cipher algorithm (e.g., the RC4) or a block cipher algorithm (e.g., the AES in cipher block chaining (CBC) mode of operation). Our objective is to give access to the outcomes of the image integrity and of its origin even though the image is stored encrypted. If watermarking and encryption are conducted jointly at the protection stage, watermark extraction and decryption can be applied independently. The security analysis of our scheme and experimental results achieved on 8-bit depth ultrasound images as well as on 16-bit encoded positron emission tomography images demonstrate the capability of our system to securely make available security attributes in both spatial and encrypted domains while minimizing image distortion. Furthermore, by making use of the AES block cipher in CBC mode, the proposed system is compliant with or transparent to the DICOM standard

    A NOVEL JOINT PERCEPTUAL ENCRYPTION AND WATERMARKING SCHEME (JPEW) WITHIN JPEG FRAMEWORK

    Get PDF
    Due to the rapid growth in internet and multimedia technologies, many new commercial applications like video on demand (VOD), pay-per-view and real-time multimedia broadcast etc, have emerged. To ensure the integrity and confidentiality of the multimedia content, the content is usually watermarked and then encrypted or vice versa. If the multimedia content needs to be watermarked and encrypted at the same time, the watermarking function needs to be performed first followed by encryption function. Hence, if the watermark needs to be extracted then the multimedia data needs to be decrypted first followed by extraction of the watermark. This results in large computational overhead. The solution provided in the literature for this problem is by using what is called partial encryption, in which media data are partitioned into two parts - one to be watermarked and the other is encrypted. In addition, some multimedia applications i.e. video on demand (VOD), Pay-TV, pay-per-view etc, allow multimedia content preview which involves „perceptual‟ encryption wherein all or some selected part of the content is, perceptually speaking, distorted with an encryption key. Up till now no joint perceptual encryption and watermarking scheme has been proposed in the literature. In this thesis, a novel Joint Perceptual Encryption and Watermarking (JPEW) scheme is proposed that is integrated within JPEG standard. The design of JPEW involves the design and development of both perceptual encryption and watermarking schemes that are integrated in JPEG and feasible within the „partial‟ encryption framework. The perceptual encryption scheme exploits the energy distribution of AC components and DC components bitplanes of continuous-tone images and is carried out by selectively encrypting these AC coefficients and DC components bitplanes. The encryption itself is based on a chaos-based permutation reported in an earlier work. Similarly, in contrast to the traditional watermarking schemes, the proposed watermarking scheme makes use of DC component of the image and it is carried out by selectively substituting certain bitplanes of DC components with watermark bits. vi ii Apart from the aforesaid JPEW, additional perceptual encryption scheme, integrated in JPEG, has also been proposed. The scheme is outside of joint framework and implements perceptual encryption on region of interest (ROI) by scrambling the DCT blocks of the chosen ROI. The performances of both, perceptual encryption and watermarking schemes are evaluated and compared with Quantization Index modulation (QIM) based watermarking scheme and reversible Histogram Spreading (RHS) based perceptual encryption scheme. The results show that the proposed watermarking scheme is imperceptible and robust, and suitable for authentication. Similarly, the proposed perceptual encryption scheme outperforms the RHS based scheme in terms of number of operations required to achieve a given level of perceptual encryption and provides control over the amount of perceptual encryption. The overall security of the JPEW has also been evaluated. Additionally, the performance of proposed separate perceptual encryption scheme has been thoroughly evaluated in terms of security and compression efficiency. The scheme is found to be simpler in implementation, have insignificant effect on compression ratios and provide more options for the selection of control factor

    PERFORMANCE ANALYSIS OF DIFFERENT SCHEMES FOR TRANSMISSION OF WATERMARKED MEDICAL IMAGES OVER FADING CHANNELS

    Get PDF
    ABSTRACT Performance Analysis of Different Schemes for Transmission of Watermarked Medical images over Fading Channels Praveen Kumar Korrai In this thesis, we investigate different types of robust schemes for transmission of medical images with concealed patient information as a watermark. In these schemes, spatial domain digital watermarking technique is adapted to embed the patient information as a watermark into the lower order bits of the medical images to reduce the storage and transmission overheads. The watermark, which comprises text data, is encrypted to prevent unauthorized access of data. To enhance the robustness of the embedded information, the encrypted watermark is coded by concatenation of Reed Solomon (RS) and low density parity check (LDPC) codes. A robust scheme for transmission of watermarked images over impulsive noisy wireless channels is first proposed and its performance analyzed. In this scheme, the bursty wireless channel is simulated by adding impulse noise to the watermark embedded image. Furthermore, turbo channel coding is used to correct the transmission errors over impulsive noisy wireless channels. However, single input single output (SISO) channel capacity is not enough to provide modern wireless services such as data and multimedia messaging services. Further, it is not reliable due to multipath fading. To overcome these problems, a multiple-input multiple-output (MIMO) transmission scheme in which multiple antennas are used at both the transmitter and the receiver has emerged as one of the most significant technical breakthroughs in modern wireless communications. MIMO can improve the channel capacity and provide diversity gain. Hence, a scheme with a MIMO channel is proposed for the transmission of watermarked medical images over Rayleigh flat fading channels and its performance analyzed using MIMO maximum likelihood detector at the receiver. We present another scheme, namely, MIMO space frequency block coded OFDM (MIMO SFBC OFDM) in this thesis for transmission of watermarked medical images over Rayleigh fading channels to mitigate the detrimental effects due to frequency selective fading. The performance of this MIMO SFBC OFDM scheme is analyzed and compared with that of SISO-OFDM using minimum mean square error V-BLAST- based detection at the receiver. The efficacy of the different proposed schemes is illustrated through implementation results on watermarked medical images

    A NOVEL JOINT PERCEPTUAL ENCRYPTION AND WATERMARKING SCHEME (JPEW) WITHIN JPEG FRAMEWORK

    Get PDF
    Due to the rapid growth in internet and multimedia technologies, many new commercial applications like video on demand (VOD), pay-per-view and real-time multimedia broadcast etc, have emerged. To ensure the integrity and confidentiality of the multimedia content, the content is usually watermarked and then encrypted or vice versa. If the multimedia content needs to be watermarked and encrypted at the same time, the watermarking function needs to be performed first followed by encryption function. Hence, if the watermark needs to be extracted then the multimedia data needs to be decrypted first followed by extraction of the watermark. This results in large computational overhead. The solution provided in the literature for this problem is by using what is called partial encryption, in which media data are partitioned into two parts - one to be watermarked and the other is encrypted. In addition, some multimedia applications i.e. video on demand (VOD), Pay-TV, pay-per-view etc, allow multimedia content preview which involves „perceptual‟ encryption wherein all or some selected part of the content is, perceptually speaking, distorted with an encryption key. Up till now no joint perceptual encryption and watermarking scheme has been proposed in the literature. In this thesis, a novel Joint Perceptual Encryption and Watermarking (JPEW) scheme is proposed that is integrated within JPEG standard. The design of JPEW involves the design and development of both perceptual encryption and watermarking schemes that are integrated in JPEG and feasible within the „partial‟ encryption framework. The perceptual encryption scheme exploits the energy distribution of AC components and DC components bitplanes of continuous-tone images and is carried out by selectively encrypting these AC coefficients and DC components bitplanes. The encryption itself is based on a chaos-based permutation reported in an earlier work. Similarly, in contrast to the traditional watermarking schemes, the proposed watermarking scheme makes use of DC component of the image and it is carried out by selectively substituting certain bitplanes of DC components with watermark bits. vi ii Apart from the aforesaid JPEW, additional perceptual encryption scheme, integrated in JPEG, has also been proposed. The scheme is outside of joint framework and implements perceptual encryption on region of interest (ROI) by scrambling the DCT blocks of the chosen ROI. The performances of both, perceptual encryption and watermarking schemes are evaluated and compared with Quantization Index modulation (QIM) based watermarking scheme and reversible Histogram Spreading (RHS) based perceptual encryption scheme. The results show that the proposed watermarking scheme is imperceptible and robust, and suitable for authentication. Similarly, the proposed perceptual encryption scheme outperforms the RHS based scheme in terms of number of operations required to achieve a given level of perceptual encryption and provides control over the amount of perceptual encryption. The overall security of the JPEW has also been evaluated. Additionally, the performance of proposed separate perceptual encryption scheme has been thoroughly evaluated in terms of security and compression efficiency. The scheme is found to be simpler in implementation, have insignificant effect on compression ratios and provide more options for the selection of control factor

    WICC 2017 : XIX Workshop de Investigadores en Ciencias de la Computación

    Get PDF
    Actas del XIX Workshop de Investigadores en Ciencias de la Computación (WICC 2017), realizado en el Instituto Tecnológico de Buenos Aires (ITBA), el 27 y 28 de abril de 2017.Red de Universidades con Carreras en Informática (RedUNCI
    corecore