594 research outputs found

    Hierarchical Routing over Dynamic Wireless Networks

    Full text link
    Wireless network topologies change over time and maintaining routes requires frequent updates. Updates are costly in terms of consuming throughput available for data transmission, which is precious in wireless networks. In this paper, we ask whether there exist low-overhead schemes that produce low-stretch routes. This is studied by using the underlying geometric properties of the connectivity graph in wireless networks.Comment: 29 pages, 19 figures, a shorter version was published in the proceedings of the 2008 ACM Sigmetrics conferenc

    Routing and search on large scale networks

    Get PDF
    In this thesis, we address two seemingly unrelated problems, namely routing in large wireless ad hoc networks and comparison based search in image databases. However, the underlying problem is in essence similar and we can use the same strategy to attack those two problems. In both cases, the intrinsic complexity of the problem is in some sense low, and we can exploit this fact to design efficient algorithms. A wireless ad hoc network is a communication network consisting of wireless devices such as for instance laptops or cell phones. The network does not have any fixed infrastructure, and hence nodes which cannot communicate directly over the wireless medium must use intermediate nodes as relays. This immediately raises the question of how to select the relay nodes. Ideally, one would like to find a path from the source to the destination which is as short as possible. The length of the found path, also called route, typically depends on how much signaling traffic is generated in order to establish the route. This is the fundamental trade-off that we will investigate in this thesis. As mentioned above, we try and exploit the fact that the communication network is intrinsically low-dimensional, or in other words has low complexity. We show that this is indeed the case for a large class of models and that we can design efficient algorithms for routing that use this property. Low dimensionality implies that we can well embed the network in a low-dimensional space, or build simple hierarchical decompositions of the network. We use both those techniques to design routing algorithms. Comparison based search in image databases is a new problem that can be defined as follows. Given a large database of images, can a human user retrieve an image which he has in mind, or at least an image similar to that image, without going sequentially through all images? More precisely, we ask whether we can search a database of images only by making comparisons between images. As a case in point, we ask whether we can find a query image q only by asking questions of the type "does image q look more like image A or image B"? The analogous to signaling traffic for wireless networks would here be the questions we can ask human users in a learning phase anterior to the search. In other words, we would like to ask as few questions as possible to pre-process and prepare the database, while guaranteeing a certain quality of the results obtained in the search phase. As the underlying image space is not necessarily metric, this raises new questions on how to search spaces for which only rank information can be obtained. The rank of A with respect to B is k, if A is B's kth nearest neighbor. In this setup, low-dimensionality is analogous to the homogeneity of the image space. As we will see, the homogeneity can be captured by properties of the rank relationships. In turn, homogeneous spaces can be well decomposed hierarchically using comparisons. Further, it allows us to design good hash functions. To design efficient algorithms for these two problems, we can apply the same techniques mutatis mutandis. In both cases, we relied on the intuition that the problem has a low intrinsic complexity, and that we can exploit this fact. Our results come in the form of simulation results and asymptotic bounds

    Sparse Euclidean Spanners with Optimal Diameter: A General and Robust Lower Bound via a Concave Inverse-Ackermann Function

    Get PDF

    DESIGN, MODELING, OPTIMIZATION, AND BENCHMARKING OF INTERCONNECTS AND SCALING TECHNOLOGIES AND THEIR CIRCUIT AND SYSTEM LEVEL IMPACT

    Get PDF
    This research focuses on the future of integrated circuit (IC) scaling technologies at the device and back end of line (BEOL) level. This work includes high level modeling of different technologies and quantifying potential performance gains on a circuit and system level. From the device side, this research looks at the scaling challenges and the future scaling drivers for conventional charge-based devices implemented at the 7nm technology node and beyond. It examines the system-level performance of stacking device logic in addition to tunneling field effect transistors (TFET) and their potential as beyond-CMOS devices. Finally, this research models and benchmarks BEOL scaling challenges and evaluates proposed technological advancements such as metal barrier scaling for copper interconnects and replacing local interconnects with ruthenium. Potential impact on performance, power, and area of these interconnect technologies is quantified for fully placed and routed circuits.Ph.D

    Randomized Local Network Computing

    Get PDF
    International audienceIn this paper, we carry on investigating the line of research questioning the power of randomization for the design of distributed algorithms. In their seminal paper, Naor and Stockmeyer [STOC 1993] established that, in the context of network computing, in which all nodes execute the same algorithm in parallel, any construction task that can be solved locally by a randomized Monte-Carlo algorithm can also be solved locally by a deterministic algorithm. This result however holds in a specific context. In particular, it holds only for distributed tasks whose solutions that can be locally checked by a deterministic algorithm. In this paper, we extend the result of Naor and Stockmeyer to a wider class of tasks. Specifically, we prove that the same derandomization result holds for every task whose solutions can be locally checked using a 2-sided error randomized Monte-Carlo algorithm. This extension finds applications to, e.g., the design of lower bounds for construction tasks which tolerate that some nodes compute incorrect values. In a nutshell, we show that randomization does not help for solving such resilient tasks
    • …
    corecore