5,668 research outputs found

    The minimum cost network upgrade problem with maximum robustness to multiple node failures

    Get PDF
    The design of networks which are robust to multiple failures is gaining increasing attention in areas such as telecommunications. In this paper, we consider the problem of upgrading an existent network in order to enhance its robustness to events involving multiple node failures. This problem is modeled as a bi-objective mixed linear integer formulation considering both the minimization of the cost of the added edges and the maximization of the robustness of the resulting upgraded network. As the robustness metric of the network, we consider the value of the Critical Node Detection (CND) problem variant which provides the minimum pairwise connectivity between all node pairs when a set of c critical nodes are removed from the network. We present a general iterative framework to obtain the complete Pareto frontier that alternates between the minimum cost edge selection problem and the CND problem. Two different approaches based on a cover model are introduced for the edge selection problem. Computational results conducted on different network topologies show that the proposed methodology based on the cover model is effective in computing Pareto solutions for graphs with up to 100 nodes, which includes four commonly used telecommunication networks.publishe

    The distance-based critical node detection problem : models and algorithms

    Get PDF
    In the wake of terrorism and natural disasters, assessing networked systems for vulnerability to failures that arise from these events is essential to maintaining the operations of the systems. This is very crucial given the heavy dependence of daily social and economic activities on networked systems such as transport, telecommunication and energy networks as well as the interdependence of these networks. In this thesis, we explore methods to assess the vulnerability of networked systems to element failures which employ connectivity as the performance measure for vulnerability. The associated optimisation problem termed the critical node (edge) detection problem seeks to identify a subset of nodes (edges) of a network whose deletion (failure) optimises a network connectivity objective. Traditional connectivity measures employed in most studies of the critical node detection problem overlook internal cohesiveness of networks and the extent of connectivity in the network. This limits the effectiveness of the developed methods in uncovering vulnerability with regards to network connectivity. Our work therefore focuses on distance-based connectivity which is a fairly new class of connectivity introduced for studying the critical node detection problem to overcome the limitations of traditional connectivity measures. In Chapter 1, we provide an introduction outlining the motivations and the methods related to our study. In Chapter 2, we review the literature on the critical node detection problem as well as its application areas and related problems. Following this, we formally introduce the distance-based critical node detection problem in Chapter 3 where we propose new integer programming models for the case of hop-based distances and an efficient algorithm for the separation problems associated with the models. We also propose two families of valid inequalities. In Chapter 4, we consider the distance-based critical node detection problem using a heuristic approach in which we propose a centrality-based heuristic that employs a backbone crossover and a centrality-based neighbourhood search. In Chapter 5, we present generalisations of the methods proposed in Chapter 3 to edge-weighted graphs. We also introduce the edge-deletion version of the problem which we term the distance based critical edge detection problem. Throughout Chapters 3, 4 and 5, we provide computational experiments. Finally, in Chapter 6 we present conclusions as well future research directions. Keywords: Network Vulnerability, Critical Node Detection Problem, Distance-based Connectivity, Integer Programming, Lazy Constraints, Branch-and-cut, Heuristics.In the wake of terrorism and natural disasters, assessing networked systems for vulnerability to failures that arise from these events is essential to maintaining the operations of the systems. This is very crucial given the heavy dependence of daily social and economic activities on networked systems such as transport, telecommunication and energy networks as well as the interdependence of these networks. In this thesis, we explore methods to assess the vulnerability of networked systems to element failures which employ connectivity as the performance measure for vulnerability. The associated optimisation problem termed the critical node (edge) detection problem seeks to identify a subset of nodes (edges) of a network whose deletion (failure) optimises a network connectivity objective. Traditional connectivity measures employed in most studies of the critical node detection problem overlook internal cohesiveness of networks and the extent of connectivity in the network. This limits the effectiveness of the developed methods in uncovering vulnerability with regards to network connectivity. Our work therefore focuses on distance-based connectivity which is a fairly new class of connectivity introduced for studying the critical node detection problem to overcome the limitations of traditional connectivity measures. In Chapter 1, we provide an introduction outlining the motivations and the methods related to our study. In Chapter 2, we review the literature on the critical node detection problem as well as its application areas and related problems. Following this, we formally introduce the distance-based critical node detection problem in Chapter 3 where we propose new integer programming models for the case of hop-based distances and an efficient algorithm for the separation problems associated with the models. We also propose two families of valid inequalities. In Chapter 4, we consider the distance-based critical node detection problem using a heuristic approach in which we propose a centrality-based heuristic that employs a backbone crossover and a centrality-based neighbourhood search. In Chapter 5, we present generalisations of the methods proposed in Chapter 3 to edge-weighted graphs. We also introduce the edge-deletion version of the problem which we term the distance based critical edge detection problem. Throughout Chapters 3, 4 and 5, we provide computational experiments. Finally, in Chapter 6 we present conclusions as well future research directions. Keywords: Network Vulnerability, Critical Node Detection Problem, Distance-based Connectivity, Integer Programming, Lazy Constraints, Branch-and-cut, Heuristics

    Content placement in 5G‐enabled edge/core data center networks resilient to link cut attacks

    Get PDF
    High throughput, resilience, and low latency requirements drive the development of 5G-enabled content delivery networks (CDNs) which combine core data centers (cDCs) with edge data centers (eDCs) that cache the most popular content closer to the end users for traffic load and latency reduction. Deployed over the existing optical network infrastructure, CDNs are vulnerable to link cut attacks aimed at disrupting the overlay services. Planning a CDN to balance the stringent service requirements and increase resilience to attacks in a cost-efficient way entails solving the content placement problem (CPP) across the cDCs and eDCs. This article proposes a framework for finding Pareto-optimal solutions with minimal user-to-content distance and maximal robustness to targeted link cuts, under a defined budget. We formulate two optimization problems as integer linear programming (ILP) models. The first, denoted as K-best CPP with minimal distance (K-CPP-minD), identifies the eDC/cDC placement solutions with minimal user-to-content distance. The second performs critical link set detection to evaluate the resilience of the K-CPP-minD solutions to targeted fiber cuts. Extensive simulations verify that the eDC/cDC selection obtained by our models improves network resilience to link cut attacks without adversely affecting the user-to-content distances or the core network traffic mitigation benefits.publishe

    A survey on OFDM-based elastic core optical networking

    Get PDF
    Orthogonal frequency-division multiplexing (OFDM) is a modulation technology that has been widely adopted in many new and emerging broadband wireless and wireline communication systems. Due to its capability to transmit a high-speed data stream using multiple spectral-overlapped lower-speed subcarriers, OFDM technology offers superior advantages of high spectrum efficiency, robustness against inter-carrier and inter-symbol interference, adaptability to server channel conditions, etc. In recent years, there have been intensive studies on optical OFDM (O-OFDM) transmission technologies, and it is considered a promising technology for future ultra-high-speed optical transmission. Based on O-OFDM technology, a novel elastic optical network architecture with immense flexibility and scalability in spectrum allocation and data rate accommodation could be built to support diverse services and the rapid growth of Internet traffic in the future. In this paper, we present a comprehensive survey on OFDM-based elastic optical network technologies, including basic principles of OFDM, O-OFDM technologies, the architectures of OFDM-based elastic core optical networks, and related key enabling technologies. The main advantages and issues of OFDM-based elastic core optical networks that are under research are also discussed
    corecore