52 research outputs found

    Two computational primitives for algorithmic self-assembly: Copying and counting

    Get PDF
    Copying and counting are useful primitive operations for computation and construction. We have made DNA crystals that copy and crystals that count as they grow. For counting, 16 oligonucleotides assemble into four DNA Wang tiles that subsequently crystallize on a polymeric nucleating scaffold strand, arranging themselves in a binary counting pattern that could serve as a template for a molecular electronic demultiplexing circuit. Although the yield of counting crystals is low, and per-tile error rates in such crystals is roughly 10%, this work demonstrates the potential of algorithmic self-assembly to create complex nanoscale patterns of technological interest. A subset of the tiles for counting form information-bearing DNA tubes that copy bit strings from layer to layer along their length

    Self-replication and evolution of DNA crystals

    Get PDF
    Is it possible to create a simple physical system that is capable of replicating itself? Can such a system evolve interesting behaviors, thus allowing it to adapt to a wide range of environments? This paper presents a design for such a replicator constructed exclusively from synthetic DNA. The basis for the replicator is crystal growth: information is stored in the spatial arrangement of monomers and copied from layer to layer by templating. Replication is achieved by fragmentation of crystals, which produces new crystals that carry the same information. Crystal replication avoids intrinsic problems associated with template-directed mechanisms for replication of one-dimensional polymers. A key innovation of our work is that by using programmable DNA tiles as the crystal monomers, we can design crystal growth processes that apply interesting selective pressures to the evolving sequences. While evolution requires that copying occur with high accuracy, we show how to adapt error-correction techniques from algorithmic self-assembly to lower the replication error rate as much as is required

    Self-Healing Tile Sets

    Get PDF
    Biology provides the synthetic chemist with a tantalizing and frustrating challenge: to create complex objects, defined from the molecular scale up to meters, that construct themselves from elementary components, and perhaps even reproduce themselves. This is the challenge of bottom-up fabrication. The most compelling answer to this challenge was formulated in the early 1980s by Ned Seeman, who realized that the information carried by DNA strands provides a means to program molecular self-assembly, with potential applications including DNA scaffolds for crystallography [19] or for molecular electronic circuits [15]. This insight opened the doors to engineering with the rich set of phenomena available in nucleic acid chemistry [20]

    Algorithmic Self-Assembly of DNA Sierpinski Triangles

    Get PDF
    Algorithms and information, fundamental to technological and biological organization, are also an essential aspect of many elementary physical phenomena, such as molecular self-assembly. Here we report the molecular realization, using two-dimensional self-assembly of DNA tiles, of a cellular automaton whose update rule computes the binary function XOR and thus fabricates a fractal patternβ€”a Sierpinski triangleβ€”as it grows. To achieve this, abstract tiles were translated into DNA tiles based on double-crossover motifs. Serving as input for the computation, long single-stranded DNA molecules were used to nucleate growth of tiles into algorithmic crystals. For both of two independent molecular realizations, atomic force microscopy revealed recognizable Sierpinski triangles containing 100–200 correct tiles. Error rates during assembly appear to range from 1% to 10%. Although imperfect, the growth of Sierpinski triangles demonstrates all the necessary mechanisms for the molecular implementation of arbitrary cellular automata. This shows that engineered DNA self-assembly can be treated as a Turing-universal biomolecular system, capable of implementing any desired algorithm for computation or construction tasks

    DNA-BASED SELF-ASSEMBLY AND NANOROBOTICS: THEORY AND EXPERIMENTS

    Get PDF
    We study the following fundamental questions in DNA-based self-assembly and nanorobotics: How to control errors in self-assembly? How to construct complex nanoscale objects in simpler ways? How to transport nanoscale objects in programmable manner? Fault tolerance in self-assembly: Fault tolerant self-assembly is important for nanofab-rication and nanocomputing applications. It is desirable to design compact error-resilient schemes that do not result in the increase in the original size of the assemblies. We present a comprehensive theory of compact error-resilient schemes for algorithmic self-assembly in two and three dimensions, and discuss the limitations and capabilities of redundancy based compact error correction schemes. New and powerful self-assembly model: We develop a reversible self-assembly model in which the glue strength between two juxtaposed tiles is a function of the time they have been in neighboring positions. Under our time-dependent glue model, we can rigorously study and demonstrate catalysis and self-replication in the tile assembly. We can assemble thin rectangles of size k Γ— N using O

    Complexity of graph self-assembly in accretive systems and self-destructible systems

    Get PDF
    AbstractSelf-assembly is a process in which small objects autonomously associate with each other to form larger complexes. It is ubiquitous in biological constructions at the cellular and molecular scale and has also been identified by nanoscientists as a fundamental method for building nano-scale structures. Recent years have seen convergent interest and efforts in studying self-assembly from mathematicians, computer scientists, physicists, chemists, and biologists. However most complexity theoretical studies of self-assembly utilize mathematical models with two limitations: (1) only attraction, while no repulsion, is studied; (2) only assembled structures of two dimensional square grids are studied. In this paper, we study the complexity of the assemblies resulting from the cooperative effect of repulsion and attraction in a more general setting of graphs. This allows for the study of a more general class of self-assembled structures than the previous tiling model. We define two novel assembly models, namely the accretive graph assembly model and the self-destructible graph assembly model, and identify a fundamental problem in them: the sequential construction of a given graph. We refer to it as the Accretive Graph Assembly Problem (AGAP) and the Self-Destructible Graph Assembly Problem (DGAP), in the respective models. Our main results are: (i) AGAPΒ is NP-complete even if the maximum degree of the graph is restricted to 4 or the graph is restricted to be planar with maximum degree 5; (ii) counting the number of sequential assembly orderings that result in a target graph (#AGAP) is #P-complete; and (iii) DGAPΒ is PSPACE-complete even if the maximum degree of the graph is restricted to 6 (this is the first PSPACE-complete result in self-assembly). We also extend the accretive graph assembly model to a stochastic model, and prove that determining the probability of a given assembly in this model is #P-complete
    • …
    corecore