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a b s t r a c t

Self-assembly is a process in which small objects autonomously associate with each
other to form larger complexes. It is ubiquitous in biological constructions at the cellular
and molecular scale and has also been identified by nanoscientists as a fundamental
method for building nano-scale structures. Recent years have seen convergent interest
and efforts in studying self-assembly frommathematicians, computer scientists, physicists,
chemists, and biologists. However most complexity theoretical studies of self-assembly
utilize mathematical models with two limitations: (1) only attraction, while no repulsion,
is studied; (2) only assembled structures of two dimensional square grids are studied.
In this paper, we study the complexity of the assemblies resulting from the cooperative
effect of repulsion and attraction in a more general setting of graphs. This allows for
the study of a more general class of self-assembled structures than the previous tiling
model.We define two novel assemblymodels, namely the accretive graph assemblymodel
and the self-destructible graph assembly model, and identify a fundamental problem in
them: the sequential construction of a given graph. We refer to it as the Accretive Graph
Assembly Problem (AGAP) and the Self-Destructible Graph Assembly Problem (DGAP), in
the respectivemodels. Ourmain results are: (i) AGAP isNP-complete even if themaximum
degree of the graph is restricted to 4 or the graph is restricted to be planar with maximum
degree 5; (ii) counting the number of sequential assembly orderings that result in a target
graph (#AGAP) is #P-complete; and (iii) DGAP is PSPACE-complete even if the maximum
degree of the graph is restricted to 6 (this is the first PSPACE-complete result in self-
assembly). We also extend the accretive graph assembly model to a stochastic model, and
prove that determining the probability of a given assembly in this model is #P-complete.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Self-assembly is the ubiquitous process in which small objects associate autonomously with each other to form larger
complexes. For example, atoms can self-assemble into molecules; molecules into crystals; cells into tissues, etc. Recently,
self-assembly has also been explored as a powerful and efficient mechanism for constructing synthetic molecular scale
objects with nano-scale features. This approach is particularly fruitful in DNA based nanoscience, as exemplified by the
diverse set of DNA lattices made from self-assembled branched DNA molecules (DNA tiles) [9,15,23,26,31,44,45]. Another
nanoscale example is the self-assembly of peptide molecules [8]. Self-assembly is also used for mesoscale construction, for
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example, via the use of capillary forces [30] or magnetic forces [1] to provide attraction and repulsion between meso-scale
tiles and other objects.

Building on classical Wang tiling models [41] dating back to the 1960s, Rothemund and Winfree [32] in 2000 proposed
an elegant discretemathematical model for complexity theoretic studies of self-assembly known as the Tile Assembly Model.
In this model, DNA tiles are treated as oriented unit squares (tiles). Each of the four sides of a tile has a glue with a positive
integral strength. Assembly occurs by accretion of tiles iteratively to an existing assembly, starting with a distinguished
seed tile. A tile can be ‘‘glued’’ to a position in an existing assembly if the tile can fit in the position such that each pair
of abutting sides of the tile and the assembly have the same glue and the total strength of the glues is greater than or
equal to the temperature, a system parameter. Research in this field largely focuses on studying the complexity of and
algorithms for (uniquely and terminally) producing assemblies with given properties, such as shape. It has been shown that
the construction of n× n squares has a program size complexity (the minimum number of distinct types of tiles required)
of Θ(

log n
log log n ) [3,32]. The upper bound is obtained by simulating a binary counter and the lower bound by analyzing the

Kolmogorov complexity of the tiling system. Themodel was later extended by Adleman et al. to include the time complexity
of generating specified assemblies [3]. Later work studies various topics, including combinatorial optimization, complexity
problems, fault tolerance, and topology changes, in the standard Tile Assembly Model as well as some of its variants [4,6,
10–14,19,28,34–39,42,43].

Though substantial progress has been made in recent years in the study of self-assembly using the above tile assembly
model, which captures many important aspects of self-assembly in nature and in nano-fabrications, the complexity of some
other important aspects of self-assembly requires further study:

– Only attraction, while no repulsion, is studied. However, repulsive forces often occur in self-assembly. For example, there
is repulsion between hydrophobic and hydrophilic tiles [7,30]; between tiles labeled with magnetic pads of the same
polarity [1]; and there is also static electric repulsion inmolecular systems, etc. Indeed, the study of repulsive forces in the
self-assembly system was posed as an open question by Adleman and colleagues in [3]. Though there has been previous
work on the kinetics of such systems [20], no complexity theoretic study has been directed towards such systems.

– Tile AssemblyModel captures well assembled structures of two dimensional square grids, but are not easily adaptable to
study assemblies of general graph structure. However, many molecular self-assemblies using DNA and other materials
involve the assembly of more diverse graph-like structures in both two and three dimensions. Pioneering work in
modelingDNA self-assembly as graphs include [16–18,33]. In particular, Jonoska et al. studied the computational capacity
of the self-assembly of realistic DNA graphs and showed that 3SAT and 3-colorability problems can be solved in constant
laboratory steps in theory [16–18]. In addition, Seeman’s group have experimentally constructed topoisomers of self-
assembled DNA graphs [33]. Klavins showed how to produce desired topology of self-assembled structures with planar
graph structure using graph grammars [21,22].

In this paper, we study the cooperative effect of repulsion and attraction in a graph setting. This approach allows the
study of a more general class of assemblies as described above.

We distinguish two systems, namely the accretive system and the self-destructible system. In an accretive system, an
assembled component cannot be removed from the assembly. In contrast, in the self-destructible system, a previously
assembled component can be ‘‘actively’’ removed from the assembly by the repulsive force exerted by another newly
assembled component. In other words, the assembly can (partially) destruct itself. We define the accretive graph assembly
model for the former and the self-destructible graph assembly model for the latter.

We first define an accretive assemblymodel and study a fundamental problem in thismodel: the sequential construction
of a given graph, referred to as the Accretive Graph Assembly Problem (AGAP). Ourmain result for thismodel is that AGAP is
NP-complete even if themaximumdegree of vertices in the graph is restricted to 4; the problem remainsNP-complete even
for planar graphs (planar AGAP or PAGAP) withmaximumdegree 5.We also prove that the problem of counting the number
of sequential assembly orderings that lead to a target graph (#AGAP) is #P-complete. We further extend the AGAP model
to a stochastic model, and prove that determining the probability of a given assembly (stochastic AGAP or SAGAP) is #P-
complete. It should be noted that these complexities are in terms of the size of the graph.

If we relax the assumption that an assembled component always stays in the assembly, repulsive forces between
assembled components can cause self-destruction in the assembly. Self-destruction is a common phenomenon in nature,
at least in biological systems. One renowned example is apoptosis, or programmed cell death [40]. Programmed cell
death can be viewed as a self-destructive behavior exercised by a multi-cellular organism, in which the organism actively
kills a subset of its constituent cells to ensure the normal development and function of the whole system. It has been
shown that abnormalities in programmed cell death regulation can cause a diverse range of diseases such as cancer and
autoimmunity [40]. It is also conceivable that self-destruction can be exploited in self-assembly based nano-fabrication: the
components that serve to generate intermediate products but are unnecessary or undesirable in the final product should be
actively removed.

To the best of our knowledge, our self-destructible graph assembly model is the first complexity theoretic model that
captures and studies the fundamental phenomenon of self-destruction in self-assembly systems. Ourmodel is different from
previouswork on reversible tiling systems [2,5]. These previous studies use elegant thermodynamic or stochastic techniques
to investigate the reversible process of tile assembly/disassembly: an assembled tile has a probability of ‘‘falling’’ off the
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Fig. 1. (a) An example of graph assembly in the accretive model. (b) A step-by-step illustration of the example assembly sequence.

assembly in a kinetic system. In contrast, our self-destructible system models the behavior of a self-assembly system that
‘‘actively’’ destructs part of itself.

To model the self-destructible systems, we define a self-destructible graph assembly model, and consider the problem
of sequentially constructing a given graph, referred to as the Self-Destructible Graph Assembly Problem (DGAP). We prove
that DGAP is PSPACE-complete even if the graph is restricted to have maximum degree 6.

The rest of the paper is organized as follows.We first define the accretive graph assemblymodel and theAGAP problem in
Section 2. In this model, we first show the NP-completeness of AGAP and PAGAP (planar AGAP) in Section 3 and then show
the #P-completeness of SAGAP (stochastic AGAP) in Section 4. Next, we define the self-destructible graph assembly model
and the DGAP problem in Section 5 and show the PSPACE-completeness of DGAP in Section 6. We close with a discussion
of our results in Section 7.

2. Accretive graph assembly model

LetN andZ denote the set of natural numbers and the set of integers, respectively. A graph assembly system is a quadruple
T = ⟨G = (V , E), vs, w, τ ⟩, where G = (V , E) is a given graph with vertex set V and edge set E, vs ∈ V is a distinguished
seed vertex, w : E → Z is a weight function (corresponding to the glue function in the standard tile assembly model [32]),
and τ ∈ N is the temperature of the system (intuitively temperature provides a tunable parameter to control the stability of
the assembled structure). In contrast to the canonical tile assembly model in [32], which allows only positive edge weight,
we allow both positive and negative edge weights, with positive (resp. negative) edge weight modeling the attraction (resp.
repulsion) between the two vertices connected by this edge.We see that this simple extensionmakes the assembly problem
significantly more complex.

Roughly speaking, given a graph assembly system T = ⟨G, vs, w, τ ⟩, G is sequentially constructible if we can attach all its
vertices one by one, starting with the seed vertex; a vertex x can be assembled if the support to it is equal to or greater than
the system temperature τ , where support is the sum of the weights of the edges between x and its assembled neighbors.
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Fig. 2. A graph construction corresponding to an AGAP reduction from 3SAT formula (x1 ∨ x2 ∨ x3)∧ (x̄1 ∨ x̄3 ∨ x2)∧ (x1 ∨ x̄2 ∨ x3). An edge between two
literal vertices is depicted as a dashed arch and assigned weight -1; all other edges have weight 2.

Fig. 1 gives an example. Here the graph is shown in Fig. 1(a) and the temperature is set to 2. Fig. 1(b) gives a step-by-step
illustration of the assembly sequence. If h gets assembled before e, then the whole graph can get assembled: an example
assembly ordering can be a ≺ b ≺ c ≺ d ≺ f ≺ g ≺ h ≺ i ≺ e. In contrast, if vertex e gets assembled before h, the graph
cannot be assembled: h can be assembled only if it gets support from both g and i; while i cannot get assembled without the
support from h.

Formally, given a graph assembly system T = ⟨G, vs, w, τ ⟩, G is sequentially constructible if there exists an ordering of
all the vertices in V , OT = (vs = v0 ≺ v1 ≺ v2 ≺ · · · ≺ vn−1) such that

∑
vj∈NG(vi),j<i w(vi, vj) ≥ τ , 0 < i ≤ n − 1,

where NG(vi) denotes the set of vertices adjacent to vi in G. The ordering OT is called an assembly ordering for G. σO(vi) =∑
vj∈NG(vi),j<i w(vi, vj) is called the support of vi in ordering O. When the context is clear, we simply use O and σ(vi) to

denote assembly ordering and support, respectively.
We define the accretive graph assembly problem as follows,

Definition 1 (Accretive Graph Assembly Problem (AGAP)). Given a graph assembly system T = ⟨G, vs, w, τ ⟩ in the accretive
model, determine whether there exists an assembly ordering O for G.

The above model is accretive in the sense that once a vertex is assembled, it cannot be ‘‘knocked off’’ by the subsequent
assembly of any other vertex. Ifwe relax this assumption,weobtain a self-destructiblemodel,which is described in Section 5.

3. AGAP and PAGAP are NP-complete

3.1. 4-DEGREE AGAP is NP-complete

Lemma 1. AGAP is in NP.

Proof. Given an assembly ordering of the vertices, sequentially check whether each vertex can be assembled. This takes
polynomial time. �

Recall that the NP-complete 3SAT problem asks: Given a Boolean formula φ in conjunctive normal form with each clause
containing 3 literals, determinewhetherφ is satisfiable [27]. 3SAT remainsNP-complete for formulas inwhich each variable
appears at most three times, and each literal at most twice [27]. We reduce this restricted 3SAT to AGAP to prove AGAP is
NP-hard.

Lemma 2. AGAP is NP-hard.

Proof. Given a 3SAT formulaφ where each variable appears atmost three times, and each literal atmost twice, we construct
below an accretive graph assembly system T = ⟨G, vs, w, τ ⟩ for φ. We then show that the satisfiability problem of φ can
be reduced (in logarithmic space) to the sequential constructibility problem of G in T .

For each clause in φ, construct a clause gadget as in Fig. 2. For each literal, we construct a literal vertex (colored white).
We further add top vertices (black) above and bottom vertices (black) below the literal vertices. We next take care of the
structure of formula φ as follows. Connect all the clause gadgets sequentially via their top vertices as in Fig. 2; connect two
literal vertices if and only if they correspond to two complement literals. This produces graph G. Designate the leftmost top
vertex as the seed vertex vs. We next assign weight−1 to an edge between two literal vertices and weight 2 to all the other
edges. Finally, set the temperature τ = 2. This completes the construction of T = ⟨G, vs, w, τ ⟩.

The following proposition implies the lemma.

Proposition 1. There is an assembly ordering O for T if and only if φ is satisfiable.

⇒

First we show that if φ can be satisfied by truth assignment T , then we can derive an assembly ordering O based on T .
Stage 1. Starting from the seed vertex, assemble all the top vertices sequentially. This can be easily done since each top

vertex has support 2, which is greater than or equal to τ = 2, the temperature.
Stage 2. Assemble all the literal vertices assigned true. Since two true literals cannot be complement literals,

no two literal vertices to be assembled at this stage can have a negative edge between them. Hence all these
true literal vertices receive a support 2 (≥τ = 2).
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Stage 3. Assemble all the bottom vertices. Note that truth assignment T satisfies φ, implying that every clause in φ has
at least one true literal. Thus every clause gadget in G has at least one literal vertex (a true literal vertex) assembled in stage
2, which in turn allows us to assemble the bottom vertex in that clause gadget.

Stage 4. Assemble all the remaining literal vertices (the false literal vertices). Observe that any remaining literal vertex
v has support 4 from its already assembled neighboring top vertex and bottom vertex and that v can have negative
support at most −2 from its assembled literal vertex neighbors (recall that each literal vertex can have at most two
literal vertex neighbors since each variable appears at most three times in φ). Hence the total support for v is at least 2
(≥τ ).
⇐

Suppose that there exists an assembly ordering O, then we can derive a satisfying truth assignment T for φ. For each
literal vertex, assign its corresponding literal true if it appears in O before all of its literal vertex neighbors (this assures
no two complement literals are both assigned true); otherwise assign it false.

To show T satisfiesφ, we only need to showevery clause contains at least one true literal. For contradiction, suppose there
exists a clause gadget A with three false literal vertices, where v is the literal vertex assembled first. However, v cannot be
assembled: it has support 2 from the top vertex; no support from the bottomvertex (v gets assembled first andhence the bot-
tom vertex in A cannot be assembled before v); at least−1 negative support from one of its literal vertex neighbors (v is as-
signed false); the total support of v is thus atmost 1, less than temperature τ = 2, a contradiction. Hence T must satisfyφ. �

We note that the technique of translating 3SAT formula into graph structure by modeling variables as vertices and
connecting complement literals is a classical technique [27], and has also been used powerfully in other different graph
self-assembly contexts [18].

The following theorem follows immediately from Lemmas 1 and 2.
Theorem 1. AGAP is NP-complete.
Let k-DEGREE AGAP be the AGAP in which the largest degree of any vertex in graph G is k. Observe that the largest degree
of any vertex in the graph construction in the proof of Lemma 2 is 4. Hence we have
Corollary 1. 4-DEGREE AGAP is NP-complete.

3.2. 5-DEGREE PAGAP is NP-complete

We next study the planar AGAP (PAGAP) problem, where the graph G in the assembly system T is planar. Here, we show
PAGAP is NP-hard by a reduction from the NP-hard planar three-satisfiability problem (P3SAT) [24]. The reduction is in
similar spirit as that in the proof of Lemma 1. First, note that the following lemma is trivially true.
Lemma 3. PAGAP is in NP.

We show that PAGAP is NP-hard by a reduction from the NP-hard planar three-satisfiability problem (P3SAT) [24],
defined in the following way. Given a 3SAT formula φ, construct its identifying graph G = (V , E) as follows: the vertex set V
is {l| l is a variable } ∪ {c| c is a clause }; the edge set E is {(l, c)| l is a variable in clause c}. If G is planar, φ is referred to as a
planar 3SAT (P3SAT) formula. P3SAT problem is to decide the satisfiability of a P3SAT formula φ.

We use the identifying graph construction in [25], which represents each variable xwith two vertices (one for x and one
for x̄) connected by an edge. See Fig. 3(a) for an example. We use the following two properties of this construction in our
proof: 1) There exists a loop L that passes between all pairs of literals without intersecting any edge between a literal and a
clause; 2) Any literal can belong to at most two clauses [25].
Lemma 4. PAGAP is NP-hard.
Proof. Given an arbitrary P3SAT formula φ, we first construct an assembly system T = ⟨G, vs, w, τ ⟩. We then show that
the satisfiability problem of φ can be reduced in logarithmic space to the sequential constructibility problem of G in T .

We construct a graph G = (V , E) by modifying the identifying graph of φ: along the loop L, add an assisting vertex vi
between every two consecutive pairs of literal vertices and connect vi with all these four vertices as shown in Fig. 3(b). Next,
we assign edge weights. The weight of an edge between a literal and a clause is 4; the weight of an edge between a literal x
and its complement x̄ is −6 if neither of them is connected to more than one clause; it is −10 if at least one of the literals
is connected to two clause vertices. The weight of an edge connecting an assisting vertex and a literal vertex x is 4 if the
weight of edge (x, x̄) is −10 and x is connected to only one clause vertex; otherwise it is 2. Finally, we select an arbitrary
assisting vertex, say v1, as the seed vertex vs and set the temperature τ = 2. This completes the construction of T .

We next prove the following proposition, which completes the proof of the lemma.
Proposition 2. If and only if φ is satisfiable, there is an assembly ordering O.
⇒

Suppose there exists a truth assignment T that satisfies φ, we give the following assembly ordering.
Stage 1. Assemble all the assisting vertices and true literals as follows. Starting from the seed vertex, following the

clockwise direction along loop L, we assemble alternately true literals (one of x and x̄ is necessarily true) and assisting vertices,
till we reach the seed vertex again. For example, a satisfying truth assignment (x, y, z, w) = (true, false, true, false) in
Fig. 3(b) gives the assembly ordering vs = v1 ≺ ȳ ≺ v2 ≺ z ≺ v3 ≺ w̄ ≺ v4 ≺ x.



J.H. Reif et al. / Theoretical Computer Science 412 (2011) 1592–1605 1597

a b
Fig. 3. (a) and (b) are respectively an identifying graph and a PAGAP graph construction corresponding to the P3SAT formula A ∧ B ∧ C ∧ D ∧ E =
(x ∨ y ∨ w) ∧ (x ∨ y) ∧ (w ∨ z) ∧ (ȳ ∨ z̄) ∧ (w̄ ∨ x̄). The larger (smaller) white circles represent clauses (literals); black vertices in (b) represent
assisting vertices. Note that each clause is adjacent to at most three literals; each literal is adjacent to at most two clauses. The grey loop in (a) is loop L;
integers in (b) indicate edge weights.

Stage 2. Assemble all the clauses. Since T satisfies φ, each clause contains at least one true literal and hence is now
connected to at least one true literal vertex assembled in stage 1. Thus all the clause vertices can be assembled now.

Stage 3. Assemble all the false literals and thus complete thewhole graph. Since all the neighbors of each false literal have
already been assembled, it is easy to verify that there is enough support for it.
⇐

Suppose that there exists an assembly ordering O, we derive from O a truth assignment T by assigning a literal vertex x
true if it appears before x̄ in O; assign it false otherwise. We claim that T satisfies φ.

For contradiction, assume there is a clause, say A, unsatisfied, with all its literals x, y, and z assigned false. This implies
that x̄ (resp. ȳ, z̄) appears before x (resp. y, z) in O. Assume w.l.o.g. that x ≺ y ≺ z in O. Since A is adjacent to only x, y, and z,
vertex xmust appear before A inO. However, by the edge weight assignment, if x appears after its complement x̄, then it can
be assembled only after all the clause vertices connected to x are assembled. In particular, we must have clause A appearing
before x. Contradiction. We thus conclude that T must satisfy φ. �

Putting together Lemmas 3 and 4, we have

Theorem 2. PAGAP is NP-complete.

Corollary 2. 5-DEGREE PAGAP is NP-complete.

4. #AGAP and SAGAP are #P-complete

4.1. #AGAP is #P-complete

We now consider a more general version of AGAP: given an accretive graph assembly system T = ⟨G, vs, w, τ ⟩ and a
target vertex set Vt ⊆ V , determine if there exists an ordering Õ(V , Vt) of V such that Vt is assembled after we attempt
assembling each vertex v ∈ V sequentially according to Õ. Vertex v will be assembled if there is enough support; otherwise
it will not. Õ is called the assembly ordering of V for Vt . When the context is clear, we simply call it assembly ordering for
Vt and denote it by Õ. Note that the assembly ordering Õ is an ordering on all the vertices in V , but we only care about the
assembly of the target vertex set Vt : the assembly of vertices in V \ Vt is neither required nor prohibited. For Vt = V , the
general AGAP is then precisely the standard AGAP. The problem of counting the number of assembly orderings for Vt ⊆ V
under this general AGAPmodel is referred to as #AGAP.

Lemma 5. #AGAP is in #P.

Wenext show#AGAP is #P-hard, using a reduction from the#P-complete problem PERMANENT, the problemof counting
the number of perfect matchings in a bipartite graph [27].

Lemma 6. #AGAP is #P-hard.

Proof. Given a bipartite graph B = (U, V , E)with two partitions of verticesU and V and edge set E, whereU = {u1, . . . , un},
V = {v1, . . . , vn}, and E = {e1, . . . , em} (recall that by definition of bipartite graph, there is no edge between any two
vertices in U and no edge between any two vertices in V ), we construct an assembly system T = ⟨G, vs, w, τ ⟩. First, we
derive graph G by adding vertices and edges to B (see Fig. 4 for an example): on each edge ek, add a splitting connector vertex
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a b
Fig. 4. (a) and (b) show an example bipartite graph B and the corresponding graph G used in the proof of Lemma 6, respectively. In (b), ci ’s denote
connector vertices (colored white); u1 is the seed vertex. The weight of an edge connecting two connector vertices (dashed line) is −4; the weight of
any other edge is 2.

ck; add an edge (dashed line) between two connector vertices if they share a same neighbor in U; connect ui and ui+1 for
i = 1, . . . , n− 1. Next, assign weight−4 to an edge between two connector vertices; assign weight 2 to all the other edges.
Finally, designate u1 as the seed vertex vs, and set the temperature τ = 2. The target vertex set Vt is U ∪ V .

A crucial property of G is that the assembly of one connector vertex c makes all of c ’s connector vertex neighbors
unable to assemble, due to the negative edge connecting c and its neighbors. Thus, starting from a vertex u ∈ U , only
one connector vertex and hence only one v ∈ V can be assembled. For a concrete example, see Fig. 4(b): starting from u1, if
we sequentially assemble c1 and v1, vertex c1 renders c2 unable to assemble, and hence the assembly sequence u1 ≺ c2 ≺ v2
is not permissible.

We first show that if there is no perfect matching in B, there is no assembly ordering for U ∪ V . If there is no perfect
matching in B, there exists S ⊆ V s.t. |N(S)| < |S| (Hall’s theorem), where N(S) ⊆ U is the set of neighboring vertices to the
vertices in S in original graph B. However, as argued above, one vertex in U can lead to the assembly of at most one vertex
in V . Thus |N(S)| < |S| implies that at least one vertex in S remains unassembled. Hence, no assembly ordering exists that
can assemble all vertices in U ∪ V .

Next, when there exists perfect matching(s) in B, we can show that each perfect matching in B corresponds to a fixed
number of assembly orderings for U ∪ V . First note that the total number of vertices in graph G is 2n + m (recall that m is
the number of edges in B and hence the number of connector vertices in G), giving a total of s = (2n + m)! permutations.
We divide s by the following factors to get the number of assembly orderings for U ∪ V .

(1) For every matching edge ek between u ∈ U and v ∈ V , we have to follow the strict order u ≺ ck ≺ v, where ck is the
connector vertex on ek. This is ensured by our construction as argued above. There are altogether n suchmatching edges.
So we need to further divide s by (3!)n.

(2) For the n vertices in U , we have to follow the strict order of assembling the vertices from left to right, and hence we need
to divide s by n!.

(3) Denote by di the degree of ui in graph B. For the di connector vertices corresponding to the di edges incident on ui, the
connector vertex corresponding to the matching edge must be assembled first, and thus, we need to further divide s by∏n

i=1 di.

Putting together (1), (2), and (3), we have that each perfect matching in B corresponds to (2n+m)!

(3!)n(n!)(
∏n

i=1 di)
assembly orderings

for U ∪ V in G. �

Lemmas 5 and 6 imply

Theorem 3. #AGAP is #P-complete.

4.2. SAGAP is #P-complete

An intimately related question to counting the total number of assembly orderings is the problem to calculate the
probability of assembling a target structure in a stochastic setting. We next extend the accretive graph self-assembly model
to stochastic accretive graph self-assembly model. Given a graph G = (V , E), where |V | = n, starting with the seed vertex
vs, what is the probability that the target vertex set Vt ⊆ V gets assembled if anytime any unassembled vertex can be picked
with equal probability? This problem is referred to as stochastic AGAP (SAGAP).

Since any unassembled vertex has an equal probability of being selected and the assembly has to start with the seed
vertex, the total number of possible orderings are (n−1)!. Then SAGAP asks precisely howmany of these (n−1)! orderings
are assembly orderings for the target vertex set Vt . Thus, #AGAP can be trivially reduced to SAGAP, and the reduction is
obviously a logarithmic space parsimonious reduction. We immediately have

Theorem 4. SAGAP is #P-complete.
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a b c

d e
Fig. 5. An example self-destructible graph assembly system.

5. Self-destructible graph assembly model

The assumption in the above accretive model is that once a vertex is assembled, it cannot be ‘‘knocked off’’ by the later
assembly of another vertex. Next, we relax this assumption and obtain a more general model: the self-destructible graph
assembly model. In this model, the incorporation of a vertex a that repulses an already assembled vertex b can make b
unstable and hence ‘‘knock’’ b off the assembly. This phenomenon renders the assembly system an interesting dynamic
property, namely (partial) self-destruction.

The self-destructible graph assembly system operates on a slot graph. A slot graph G̃= (S, E) is a set of ‘‘slots’’ S connected
by edges E ⊆ S × S. Each ‘‘slot’’ s ∈ S is associated with a set of vertices V (s). During the assembly process, a slot s is either
empty or is occupied by a vertex v ∈ V (s). A slot s occupied by a vertex v is denoted as ⟨s, v⟩.

A self-destructible graph assembly system is defined as T = ⟨G̃= (S, E), V ,M, w, ⟨ss, vs⟩, τ ⟩, where G̃ = (S, E) is a given
slot graph with slot set S and edge set E ⊆ S × S; V =


s∈S V (s) is the set of vertices; the association rule M ⊆ S × V

is a binary relation between S and V , which maps each slot s to its associated vertex set V (s) (note that the sets V (s) are
not necessarily disjoint); for any edge (sa, sb) ∈ E, we define a weight function w : V (sa) × V (sb) → Z (here a weight is
determined cooperatively by an edge (sa, sb) and the two vertices occupying sa and sb); ⟨ss, vs⟩ is a distinguished seed slot
ss occupied by vertex vs; τ ∈ N is the temperature of the system. The size of a self-destructible assembly system is the bit
representation of the system.

A configuration of G̃ is a function A : S → V ∪ {empty}, where empty indicates a slot being unoccupied. For ease of
exposition, a configuration is alternatively referred to as a graph, denoted as G. When the context is clear, we simply refer
to a slot occupied by a vertex as a vertex, for readability.

Given the above self-destructible graph assembly system, we aim at assembling a target graph, i.e. reaching a target
configuration, Gt , starting with the seed vertex ⟨ss, vs⟩ and using the following unit assembly operations. In each unit
operation, we temporarily attach a vertex v to the current graph G and obtain a graph G′, and then repeat the following
procedure until no vertex can be removed from the assembly: inspect all the vertices in current graph G′; find the vertex
v′ with the smallest support, i.e. the sum of the weights of edges between v′ and its assembled neighbors; in case of a tie
for vertex with smallest support, we break the ties arbitrarily (note that v′ can be v); if the support to v′ is less than τ ,
remove v′. This procedure ensures that when a vertex that repulses its assembled neighbors is incorporated in the existing
assembly, all the vertices whose support drops below system temperature is removed. However, in the case when a vertex
to be attached exerts no repulsive force to its already assembled neighbors, the above standard unit assembly operation can
be simplified as follows: a vertex can be assembled if the total support it receives from its assembled neighbors is equal to
or greater than the system temperature τ — this is exactly the same as the operation in the accretive graph assembly model.

Figs. 5 and 6 give a concrete example of a self-destructible graph assembly system T and a sequence of unit assembly
operations that assemble a target graph Gt in T . Fig. 5 illustrates the assembly system T = ⟨G̃ = (S, E), V , M, w, ⟨ss, vs⟩,
τ ⟩. Here, slot sa is designated as the distinguished seed slot ss and temperature τ is set to 2. Fig. 5(a) depicts the slot graph
G̃ = (S, E), where S = {sa, sb, sc, sd, se, sf , sg , sh, si}, E = {(sa, sb), (sb, sc), (sa, sd), (sb, se), (sc, sf ), (sd, se), (se, sf ), (sd, sg),
(se, sh), (sf , si), (sg , sh), (sh, si)}. Fig. 5(b) gives the vertex set V = {black, grey}. Fig. 5(c) shows the association rule M:
V (se) = {black, grey}; V (s) = {black}, for s ∈ S \ se. Fig. 5(d) illustrates w. A numerical value indicates the weight of an
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Fig. 6. The sequence of operations that assemble the target graph Gt .

edge incident to two occupied slots. The left panel of Fig. 5(d) describes the cases when both slots incident to an edge are
occupied by black vertices; the right panel describes the casewhen slot se is occupied by a grey vertex but its neighboring slot
is occupied by a black vertex. For example, the weight for edge (se, sh), when both se and sh are occupied with black vertices,
is 2; when se is occupied by a grey vertex and sh by a black vertex, the weight is −2. The negative weight is indicated by a
dashed edge. Fig. 5 (e) depicts the target graph (configuration) Gt , where each the slot in S is occupied by a black vertex, i.e.
A(s) = black for any s ∈ S.

An example sequence of unit assembly operations that sequentially assemble the target graph Gt are illustrated step by
step in Fig. 6. We start with ⟨ss, black⟩, where ss = sa. In step (1), a black vertex is put into slot sb and stays there, since the
support it receives from the black vertex occupying slot sa is 2, which is greater than or equal to the system temperature
τ = 2. In step (5), a grey vertex occupies slot se and is attached to existing assembly. It stays in slot se since it receives a
total support of 2 from its neighboring assembled vertices (support 1 from the black vertex occupying slot sb and support 1
from the black vertex occupying slot sd). Step (8) has two stages (8a) and (8b). In step (8a), a black vertex is temporarily put
into slot sh. Now the grey vertex occupying slot se has the least support among all the vertices in this temporary assembly.
Since its support 1 is less than temperature τ = 2, the grey vertex in se is removed from the assembly in step (8b), according
to the unit assembly operation rule. Now no vertex can be removed since all vertices have support greater than or equal to
τ = 2. In step (9), a black vertex is put into slot se and this completes the assembly of the target graph.

Here we emphasize that in the above example, the grey vertex at slot se serves as a ‘‘stepping stone’’ for assembling the
target graph: its incorporation into the assembly enables the subsequent assembly of a black vertex at slot sf , which in turn
effects the assembly of a black vertex at si. However, at this stage, the grey vertex at slot se becomes a barrier for the progress
of the assembly towards the target configuration — it must be knocked off the assembly to evacuate slot se for the assembly
of a black vertex at se. This is achieved by the incorporation of a black vertex at slot sh. This is precisely the power of (partial)
self-destruction: the system actively gets rid of the undesirable components to ensure the progress of further assembly.
Finally, we point out that the grey vertex associated with se is indispensable for the assembly of the target graph. The reader
can verify that without this grey vertex, the target graph cannot be sequentially constructed.

In the above example, the assembly of black vertex at slot sh ‘‘deterministically’’ and ‘‘irreversibly’’ knocks off the
grey vertex at slot se. However, the self-destructible graph assembly model can also exhibit interesting non-deterministic,
reversible behavior under the following circumstance: the assembly of component a knocks off component b, while the
immediate re-assembly of component b can in turn knock off the newly assembled component a. For a concrete example,
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Fig. 7. Vertices used in the basic TM simulation.

now assume that in Fig. 6, the weight for edge (sh, si) (when slots sh and si are occupied by black vertices) is 2 instead of
3. Then at step (8b) either the black vertex at slot sh or the grey vertex at slot se can be removed, since both vertices have
support 1 < 2 = τ and we break ties arbitrarily. For the same reason, in the case when the grey vertex at se is removed,
an immediate reassembly of a grey vertex at slot se can result in the disassembly of the black vertex at sh. In this sense,
the system at this stage becomes ‘‘non-deterministic’’ and ‘‘reversible’’. This property is used in the construction of a cyclic
gadget, which provides the basis for our PSPACE-complete proof in Section 6.

Now we are ready to define the Self-Destructible Graph Assembly Problem (DGAP).

Definition 2 (Self-Destructible Graph Assembly Problem (DGAP)). Given a self-destructible graph assembly system T =

⟨G = (S, E), V ,M, w, ⟨ss, vs⟩, τ ⟩ and a target graph (configuration) Gt , determine whether there exists a sequence of
assembly operations such that Gt can be assembled starting from ⟨ss, vs⟩.

6. DGAP is PSPACE-complete

Theorem 5. DGAP is PSPACE-complete.

Proof. Recall that the PSPACE-complete problem IN-PLACE ACCEPTANCE is as follows: given a deterministic Turing
machine (TM for short) U and an input string x, does U accept xwithout leaving the first |x| + 1 symbols of the string [27]?
We reduce IN-PLACE ACCEPTANCE to DGAP using a direct simulation of a deterministic TM U on x with self-destructible
graph assembly in PSPACE.

The proof builds on (1) a classical technique for simulating TM using self-assembly of square tiles [29,32], which takes
exponential space for deciding PSPACE-complete languages; and (2) our new cyclic gadget, which helps the classical TM
simulation reuse space and thus achieve a PSPACE simulation. We first reproduce the classical simulation; next introduce
our modification to the classical simulation; then describe our cyclic gadget; finally integrate the cyclic gadget with the
modified TM simulation to obtain a PSPACE simulation and thus conclude the proof.

Classical TMsimulation. The classical schemeuses the assembly of vertices on a 2D square grid tomimic a TM’s transition
history [29,32]. Consecutive configurations of TM are represented by successive horizontal rows of assembled-vertices.

Given a TM U(Q , Σ, δ, q0), where Q is a finite set of states, Σ is a finite set of symbols, δ is the transition function, and
q0 ∈ Q is the initial state, we construct a self-destructible assembly system T = ⟨G = (S, E), V ,M, w, ⟨ss, vs⟩, τ ⟩ as follows.
The slot graph G = (S, E) is an infinite 2D square grid; each node of the grid corresponds to a slot s ∈ S. A vertex v ∈ V
is represented as a quadruple v = ⟨a, b, c, d⟩, where a, b, c , and d are referred to as the North, East, South, and West ‘glues’
(see Fig. 7). Each glue x is associated with an integral strength g(x). More specifically, we construct the following vertices:

– For each s ∈ Σ , construct a symbol vertex ⟨s, γ , s, γ ⟩, where γ is a special symbol /∈ Σ .

– For each ⟨q, s⟩ ∈ Q ×Σ , construct state vertices ⟨⟨q, s⟩, γ , s,
→

q ⟩ and ⟨⟨q, s⟩,
←

q , s, γ ⟩.
– For each transition ⟨q, s⟩ → ⟨q′, s′, L⟩ (resp. ⟨q, s⟩ → ⟨q′, s′, R⟩), where L (resp. R) is the head moving direction ‘‘Left’’

(resp. ‘‘Right’’), construct a transition vertex ⟨s′, γ , ⟨q, s⟩,
←

q′⟩ (resp. ⟨s′,
→

q′, ⟨q, s⟩, γ ⟩).
– For transition ⟨q, s⟩ → accept (resp. reject), construct a termination vertex ⟨accept, γ , ⟨q, s⟩, γ ⟩ (resp.
⟨reject, γ , ⟨q, s⟩, γ ⟩).

The glue strength g(⟨q, s⟩) is set to 2; all other glue strengths are 1. Mapping relation M: every vertex in V can be mapped
to every slot in S. We next describe weight function V × V × E → Z. Consider two vertices v1 = ⟨a, b, c, d⟩ and
v2 = ⟨a′, b′, c ′, d′⟩ connected by edge e, if e is horizontal and v1 lies to the East (resp. West) of v2, the weight function
is g(b′, d) (resp. g(b, d′)); if e is vertical and v1 lies to the North (resp. South) of v2, the weight function is g(c, a′) (resp.
g(a, c ′)); where g(x, y) = g(x) (resp. 0) if x = y (resp. x ≠ y). In other words, the edge weight for two neighboring vertices
is the strength of the abutting glues, if the abutting glues are the same; otherwise it is 0.
It is straightforward to show that the assembly of the vertices in V on the slot graph G = (S, E) simulates the operation of
the TM U . Fig. 8(a) gives a concrete example to illustrate the simulation process as in [32]. Here we assume the bottom row
in the assembly in Fig. 8 (a) is pre-assembled.

Our modified TM simulation.We add two modifications to the classical simulation and obtain the scheme in Fig. 8 (b):
1) a set of vertices are added to assemble an input row (bottom row in the figure) and 2) a dummy column is added to the
leftmost of the assembly. For the construction, see the self-explanatory Fig. 8(b). The leftmost bottom vertex is the seed
vertex and a thick line indicates a weight 2 edge. The reason for adding the dummy column is as follows. The glue strength
g(⟨q, s⟩) is 2 in Fig. 8(a); this is necessary to initiate the assembly of a new row and hence a transition to next configuration.
However, due to a subtle technical point explained later (in the part ‘‘Integrating the cyclic gadget with TM simulation’’),
we cannot allow weight 2 edge(s) in a column unless all the edges in this column have weight 2. So we add the leftmost
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a

b
Fig. 8. (a) An example classical simulation of a Turing machine U(Q , Σ, δ, q0), where Q = {A, B, C}; Σ = {0, 1}; transition function δ is shown in the
figure; q0 = A. The top of the left panel shows two symbol vertices; below are some example transition rules and the corresponding state vertices and
transition vertices. The right panel illustrates the simulation of U on input 001 (simulated as the bottom row, which is assumed to be preassembled),
according to the transition rules in the figure; the head’s initial position is on the leftmost vertex. Each transition of U adds a new row. (b) Our modified
scheme. ăThe leftmost bottom vertex is the seed vertex. The leftmost column is the dummy column. In both (a) and (b), a thick line indicates a weight 2
edge; a thin line indicates weight 1; thick grey arrows indicate the assembly sequence.

dummy column of vertices connected by weight 2 edges, and this enables us to set g(⟨q, s⟩) = 1 and thus avoid weight
2 edges other than those in the dummy column. The modified scheme simulates a TM on input x with the head initially
residing at s0 and never moving to the left of s0. The assembly proceeds from bottom to top; within each row, it starts from
the leftmost dummy vertex and proceeds to the right (note the difference in the assembly sequence in Fig. 8(a) and (b), as
indicated by the thick grey arrows). Unfortunately, this assembly sequence can introduce error: e.g. in place of a state vertex
v1 = ⟨⟨q, si⟩,

←

q , si, γ ⟩, a symbol vertex v2 = ⟨si, γ , si, γ ⟩ can get assembled since v1 and v2 share the same South glue and
the sameWest glue. Fortunately, this mistake can be corrected by our final assembly system that performs a self-destructible
simulation of a Turing machine, as described later.

Our cyclic gadget. The above strategy to simulate TM by laying out its configurations one above another can result in a
graphwith height exponential in the size of the input (|x|): the height of the graph is precisely the number of transitions plus
one. A crucial observation is that once row i is assembled, row i− 1 is no longer needed: row i holds sufficient information
for assembling row i + 1 and hence for the simulation to proceed. Thus, we can evacuate row i − 1 and reuse the space to
assemble a future row, say row i + 2. Using this trick, we can shrink the number of rows from an exponential number to
a constant. The self-destructible graph assembly model can provide us with precisely this power. To realize this power of
evacuating and reusing space, we construct a cyclic gadget, shown in Fig. 9(a). The gadget contains three kinds of vertices:
the computational vertices (a, b, and c) that carry out the actual simulation of the Turing machine; the knocking vertices (x, y,
and z) that serve to knock off the computational vertices and thus release the space; the anchor vertices (x′, y′, and z ′) that
anchor the knocking vertices. Edge weights are labeled in the figure.

For ease of exposition, we introduce a little more notation. The event in which a new vertex b is attached to a pre-
assembled vertex a is denoted as a · b; the event in which a knocks off b is denoted as a ⊣ b.

We next describe the operation of the cyclic gadget. We require that anchor vertices x′, y′, and z ′ and
computational vertex a are pre-assembled. The anchor vertices and computational vertices keep getting assembled and
then knocked off in a counterclockwise fashion. First, b is attached to a (event a · b). Then x is attached to b (event b · x). At
this point, x has total support 1 from b, x′, and a (providing support 2, 2, and−3, respectively); a has total support−1 from
b and x (providing support 2 and −3, respectively). Since the temperature is 2, x knocks off a (x ⊣ a). Next, we have b · c
followed by c · y. At this point, y has total support 1 from c and y′; b has total support 1 from x and c . Therefore, either y ⊣ b
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a

b
Fig. 9. (a) The construction and operation of our cyclic gadget. The counterclockwise grey cycle indicates the desired sequence of events. (b) The integrated
scheme. Grey edges have weight 2. Unlabeled black edges have weight 1. vs indicates the seed vertex; z0 is the seed slot. v′s indicates a distinguished
computational ‘‘seed’’.

or b ⊣ y can happen, but y ⊣ b is in the desired counterclockwise direction. Next, we have cycles of (reversible) events. In
summary, the following sequence of events occur, providing the desired cyclicity:
a · b, b · x, x ⊣ a; b · c , c · y, y ⊣ b; (c · a, a ⊣ x, a · z, z ⊣ c; a · b, b ⊣ y, b · x, x ⊣ a; b · c , c ⊣ z, c · y, y ⊣ b)∗;

The steps in the () keep repeating. Note that the steps in the () are reversible, which facilitate our reversible simulation
of a Turing machine below.

Integrating the cyclic gadgetwith TM simulation.Wenext integrate the cyclic gadget with themodified TM simulation
in Fig. 8(b). In the resulting scheme,we obtain a reversible simulation of a deterministic TMon a slot graph of constant height,
by evacuating old rows and reusing the space: row i is evacuated after the assembly of row i + 1, providing space for the
assembly of row i+ 3.

Fig. 9(b) illustrates the integrated scheme. Slot rows A, B, and C correspond to rows i = 3r , i = 3r + 1, and i = 3r + 2
in Fig. 8(b), respectively. Let |x| = n. A is a sequence of slots A = [a0, a1, . . . , an+1]; similarly, B = [b0, b1, . . . , bn+1] and
C = [c0, c1, . . . , cn+1] as in Fig. 9(b). Slots a0, b0, and c0 are dummy slots (corresponding to the dummy column in Fig. 8(b)).
For each aj, bj, and cj, we construct a cyclic gadget by introducing slots xj, yj, zj, x′j , y

′

j , and z ′j .
Slot z ′0 is designated as the seed slot ss and one of its associated vertices as the seed vertex vs and the temperature is again

set to 2.
The edge weights are shown in the figure. We emphasize that the weight for an edge between two computational ver-

tices (vertices in A, B, and C) u and v is set to the glue strength if u and v have the same glue on their abutting sides; otherwise
it is 0. This is consistentwith the scheme in Fig. 8(b) and helps to ensure the proper operation of the computational assembly.
In contrast, theweight for any other edge is always set to the value shown in Fig. 9(b), regardless of the actual computational
vertices present in the slots in A, B, and C; this ensures the proper operation of the cyclic gadget.

The assembly proceeds as follows. First, the frame of anchoring vertices (subgraphwith grey edges) is assembled, starting
from the seed vertex at z ′0. The seed vertex at z ′0 pulls in a distinguished computational vertex v′s (corresponding to the seed
vertex in Fig. 8(b)) at slot a0, and v′s subsequently initiates the assembly of the input row (corresponding to the bottom row
in Fig. 8(b)). Then the computational vertices assemble, simulating the process shown in Fig. 8(b). Meanwhile, the cyclic
gadget functions along each layer of aj, bj, and cj (corresponding to column j in Fig. 8(b)), affecting the reusing of space. More
specifically, vertices corresponding to those in rows i = 3r , i = 3r + 1, and i = 3r + 2 in Fig. 8(b) will be assembled in A, B,
and C respectively. Similar to the process in Fig. 9(a), row i+1 gets assembledwith the support from row i, and subsequently
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pulls in knocking vertices, which knock off row i and thus evacuate space for future row i + 3 to assemble. Within a row,
the vertices are knocked off sequentially from left to right, starting with the dummy vertex.

There are some subtle technical points regarding edge weight assignment. First, the weight for the edge connecting
vertices vs = z0 and v′s is 2;while theweight for an edge connecting z ′0 and subsequent vertices other than v′s that occupy slot
a0 is 0. This ensures the correct operation of the cyclic gadget for the dummyslots. Second, the assembly of the first row (input
row) involves computational vertices with glue strength 2 (rather than 1) and hence weight 2 edges between neighboring
vertices in this row. However no modification on the edge weight of the edges incident to the knocking vertices and
anchor vertices is required to accommodate this edge weight difference: the initial step (a · b, b · x, x ⊣ a) is irreversible and
it is straightforward to check that x ⊣ a can occur successfully. Third, except for the edges connecting dummy vertices, no
weight 2 edge exists between the computational vertices after the evacuation of the input row. This is essential for upper
bounding the number of vertices associated with each slot: otherwise, an exponential number of knocking vertices and
anchor vertices would be required.

There are also some technical subtleties regarding error elimination. During the assembly of computational vertices er-
rors can happen as described in our ’’modified TM simulation’’. However, such errors will not disrupt the correct operation
of our assembly system for the following two reasons. First, the error cannot propagate horizontally. Second, thanks to the
reversible nature of our assembly system, the incorrectly assembled vertices are knocked off and eventually only the correct
simulation process can proceed to its full extent. As a consequence, if TM U accepts x, our simulation can guarantee that our
simulation eventually follow a path to the final acceptance state; while if TM U rejects x, no such path exists.

Concluding the proof. We set the target graph Gt as a complete row of vertices containing ACCEPT termination vertex
⟨accept, γ , ⟨s, q⟩, γ ⟩. Then Gt can be assembled if and only if TM U accepts x. We insist Gt to be a complete row of vertices
(occupying s0, s1, . . ., s|x|+1, where s ∈ {a, b, c}) to avoid false positives. Note the size of the slot graph used in the proof is
polynomial in the size of the input |x| and hence our simulation is in PSPACE. �

Corollary 3. 6-DEGREE DGAP is PSPACE-complete.

7. Conclusion

In this paper,we define twonewmodels of self-assembly and obtain the following complexity results: 4-DEGREE AGAP is
NP-complete; 5-DEGREE PAGAP is NP-complete; #AGAP and SAGAP are #P-complete; 6-DEGREE DGAP is PSPACE-
complete. One immediate open problem is to determine the complexity of these problems with lower degrees. In addition,
it would be nice to find approximation algorithms for the optimization version of the NP-hard problems. Note AGAP can
be solved in polynomial time if only positive edges are permitted in graph G, using a greedy heuristic. In contrast, when
negative edges are allowed, for each negative edge e = (v1, v2), we need to decide the relative order for assembling v1
and v2. Thus k negative edges imply 2k choices, and we have to find out whether any of these 2k choices can result in the
assembly of the target graph. This is the component that makes the problem hard.
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