25,073 research outputs found

    Compressing networks with super nodes

    Full text link
    Community detection is a commonly used technique for identifying groups in a network based on similarities in connectivity patterns. To facilitate community detection in large networks, we recast the network to be partitioned into a smaller network of 'super nodes', each super node comprising one or more nodes in the original network. To define the seeds of our super nodes, we apply the 'CoreHD' ranking from dismantling and decycling. We test our approach through the analysis of two common methods for community detection: modularity maximization with the Louvain algorithm and maximum likelihood optimization for fitting a stochastic block model. Our results highlight that applying community detection to the compressed network of super nodes is significantly faster while successfully producing partitions that are more aligned with the local network connectivity, more stable across multiple (stochastic) runs within and between community detection algorithms, and overlap well with the results obtained using the full network

    Optimal Multiphase Investment Strategies for Influencing Opinions in a Social Network

    Get PDF
    We study the problem of optimally investing in nodes of a social network in a competitive setting, where two camps aim to maximize adoption of their opinions by the population. In particular, we consider the possibility of campaigning in multiple phases, where the final opinion of a node in a phase acts as its initial biased opinion for the following phase. Using an extension of the popular DeGroot-Friedkin model, we formulate the utility functions of the camps, and show that they involve what can be interpreted as multiphase Katz centrality. Focusing on two phases, we analytically derive Nash equilibrium investment strategies, and the extent of loss that a camp would incur if it acted myopically. Our simulation study affirms that nodes attributing higher weightage to initial biases necessitate higher investment in the first phase, so as to influence these biases for the terminal phase. We then study the setting in which a camp's influence on a node depends on its initial bias. For single camp, we present a polynomial time algorithm for determining an optimal way to split the budget between the two phases. For competing camps, we show the existence of Nash equilibria under reasonable assumptions, and that they can be computed in polynomial time

    An Empirical Evaluation Of Social Influence Metrics

    Full text link
    Predicting when an individual will adopt a new behavior is an important problem in application domains such as marketing and public health. This paper examines the perfor- mance of a wide variety of social network based measurements proposed in the literature - which have not been previously compared directly. We study the probability of an individual becoming influenced based on measurements derived from neigh- borhood (i.e. number of influencers, personal network exposure), structural diversity, locality, temporal measures, cascade mea- sures, and metadata. We also examine the ability to predict influence based on choice of classifier and how the ratio of positive to negative samples in both training and testing affect prediction results - further enabling practical use of these concepts for social influence applications.Comment: 8 pages, 5 figure

    Exact Computation of Influence Spread by Binary Decision Diagrams

    Full text link
    Evaluating influence spread in social networks is a fundamental procedure to estimate the word-of-mouth effect in viral marketing. There are enormous studies about this topic; however, under the standard stochastic cascade models, the exact computation of influence spread is known to be #P-hard. Thus, the existing studies have used Monte-Carlo simulation-based approximations to avoid exact computation. We propose the first algorithm to compute influence spread exactly under the independent cascade model. The algorithm first constructs binary decision diagrams (BDDs) for all possible realizations of influence spread, then computes influence spread by dynamic programming on the constructed BDDs. To construct the BDDs efficiently, we designed a new frontier-based search-type procedure. The constructed BDDs can also be used to solve other influence-spread related problems, such as random sampling without rejection, conditional influence spread evaluation, dynamic probability update, and gradient computation for probability optimization problems. We conducted computational experiments to evaluate the proposed algorithm. The algorithm successfully computed influence spread on real-world networks with a hundred edges in a reasonable time, which is quite impossible by the naive algorithm. We also conducted an experiment to evaluate the accuracy of the Monte-Carlo simulation-based approximation by comparing exact influence spread obtained by the proposed algorithm.Comment: WWW'1

    Theories for influencer identification in complex networks

    Full text link
    In social and biological systems, the structural heterogeneity of interaction networks gives rise to the emergence of a small set of influential nodes, or influencers, in a series of dynamical processes. Although much smaller than the entire network, these influencers were observed to be able to shape the collective dynamics of large populations in different contexts. As such, the successful identification of influencers should have profound implications in various real-world spreading dynamics such as viral marketing, epidemic outbreaks and cascading failure. In this chapter, we first summarize the centrality-based approach in finding single influencers in complex networks, and then discuss the more complicated problem of locating multiple influencers from a collective point of view. Progress rooted in collective influence theory, belief-propagation and computer science will be presented. Finally, we present some applications of influencer identification in diverse real-world systems, including online social platforms, scientific publication, brain networks and socioeconomic systems.Comment: 24 pages, 6 figure

    Structure of Heterogeneous Networks

    Full text link
    Heterogeneous networks play a key role in the evolution of communities and the decisions individuals make. These networks link different types of entities, for example, people and the events they attend. Network analysis algorithms usually project such networks unto simple graphs composed of entities of a single type. In the process, they conflate relations between entities of different types and loose important structural information. We develop a mathematical framework that can be used to compactly represent and analyze heterogeneous networks that combine multiple entity and link types. We generalize Bonacich centrality, which measures connectivity between nodes by the number of paths between them, to heterogeneous networks and use this measure to study network structure. Specifically, we extend the popular modularity-maximization method for community detection to use this centrality metric. We also rank nodes based on their connectivity to other nodes. One advantage of this centrality metric is that it has a tunable parameter we can use to set the length scale of interactions. By studying how rankings change with this parameter allows us to identify important nodes in the network. We apply the proposed method to analyze the structure of several heterogeneous networks. We show that exploiting additional sources of evidence corresponding to links between, as well as among, different entity types yields new insights into network structure
    • 

    corecore