61,798 research outputs found

    Intrinsically Dynamic Network Communities

    Get PDF
    Community finding algorithms for networks have recently been extended to dynamic data. Most of these recent methods aim at exhibiting community partitions from successive graph snapshots and thereafter connecting or smoothing these partitions using clever time-dependent features and sampling techniques. These approaches are nonetheless achieving longitudinal rather than dynamic community detection. We assume that communities are fundamentally defined by the repetition of interactions among a set of nodes over time. According to this definition, analyzing the data by considering successive snapshots induces a significant loss of information: we suggest that it blurs essentially dynamic phenomena - such as communities based on repeated inter-temporal interactions, nodes switching from a community to another across time, or the possibility that a community survives while its members are being integrally replaced over a longer time period. We propose a formalism which aims at tackling this issue in the context of time-directed datasets (such as citation networks), and present several illustrations on both empirical and synthetic dynamic networks. We eventually introduce intrinsically dynamic metrics to qualify temporal community structure and emphasize their possible role as an estimator of the quality of the community detection - taking into account the fact that various empirical contexts may call for distinct `community' definitions and detection criteria.Comment: 27 pages, 11 figure

    Detecting the Influence of Spreading in Social Networks with Excitable Sensor Networks

    Full text link
    Detecting spreading outbreaks in social networks with sensors is of great significance in applications. Inspired by the formation mechanism of human's physical sensations to external stimuli, we propose a new method to detect the influence of spreading by constructing excitable sensor networks. Exploiting the amplifying effect of excitable sensor networks, our method can better detect small-scale spreading processes. At the same time, it can also distinguish large-scale diffusion instances due to the self-inhibition effect of excitable elements. Through simulations of diverse spreading dynamics on typical real-world social networks (facebook, coauthor and email social networks), we find that the excitable senor networks are capable of detecting and ranking spreading processes in a much wider range of influence than other commonly used sensor placement methods, such as random, targeted, acquaintance and distance strategies. In addition, we validate the efficacy of our method with diffusion data from a real-world online social system, Twitter. We find that our method can detect more spreading topics in practice. Our approach provides a new direction in spreading detection and should be useful for designing effective detection methods

    Detection of hidden structures on all scales in amorphous materials and complex physical systems: basic notions and applications to networks, lattice systems, and glasses

    Full text link
    Recent decades have seen the discovery of numerous complex materials. At the root of the complexity underlying many of these materials lies a large number of possible contending atomic- and larger-scale configurations and the intricate correlations between their constituents. For a detailed understanding, there is a need for tools that enable the detection of pertinent structures on all spatial and temporal scales. Towards this end, we suggest a new method by invoking ideas from network analysis and information theory. Our method efficiently identifies basic unit cells and topological defects in systems with low disorder and may analyze general amorphous structures to identify candidate natural structures where a clear definition of order is lacking. This general unbiased detection of physical structure does not require a guess as to which of the system properties should be deemed as important and may constitute a natural point of departure for further analysis. The method applies to both static and dynamic systems.Comment: (23 pages, 9 figures

    Structure of Heterogeneous Networks

    Full text link
    Heterogeneous networks play a key role in the evolution of communities and the decisions individuals make. These networks link different types of entities, for example, people and the events they attend. Network analysis algorithms usually project such networks unto simple graphs composed of entities of a single type. In the process, they conflate relations between entities of different types and loose important structural information. We develop a mathematical framework that can be used to compactly represent and analyze heterogeneous networks that combine multiple entity and link types. We generalize Bonacich centrality, which measures connectivity between nodes by the number of paths between them, to heterogeneous networks and use this measure to study network structure. Specifically, we extend the popular modularity-maximization method for community detection to use this centrality metric. We also rank nodes based on their connectivity to other nodes. One advantage of this centrality metric is that it has a tunable parameter we can use to set the length scale of interactions. By studying how rankings change with this parameter allows us to identify important nodes in the network. We apply the proposed method to analyze the structure of several heterogeneous networks. We show that exploiting additional sources of evidence corresponding to links between, as well as among, different entity types yields new insights into network structure

    Uncovering the Wider Structure of Extreme Right Communities Spanning Popular Online Networks

    Get PDF
    Recent years have seen increased interest in the online presence of extreme right groups. Although originally composed of dedicated websites, the online extreme right milieu now spans multiple networks, including popular social media platforms such as Twitter, Facebook and YouTube. Ideally therefore, any contemporary analysis of online extreme right activity requires the consideration of multiple data sources, rather than being restricted to a single platform. We investigate the potential for Twitter to act as a gateway to communities within the wider online network of the extreme right, given its facility for the dissemination of content. A strategy for representing heterogeneous network data with a single homogeneous network for the purpose of community detection is presented, where these inherently dynamic communities are tracked over time. We use this strategy to discover and analyze persistent English and German language extreme right communities.Comment: 10 pages, 11 figures. Due to use of "sigchi" template, minor changes were made to ensure 10 page limit was not exceeded. Minor clarifications in Introduction, Data and Methodology section

    Uncovering the wider structure of extreme right communities spanning popular online networks

    Get PDF
    AbstractRecent years have seen increased interest in the online presence of extreme right groups. Although originally composed of dedicated websites, the online extreme right milieu now spans multiple networks, including popular social media platforms such as Twitter, Facebook and YouTube. Ideally therefore, any contemporary analysis of online extreme right activity requires the consideration of multiple data sources, rather than being restricted to a single platform.We investigate the potential for Twitter to act as one possible gateway to communities within the wider online network of the extreme right, given its facility for the dissemination of content. A strategy for representing heterogeneous network data with a single homogeneous network for the purpose of community detection is presented, where these inherently dynamic communities are tracked over time. We use this strategy to discover and analyze persistent English and German language extreme right communities.Authored by Derek O’Callaghan, Derek Greene, Maura Conway, Joe Carthy and Padraig Cunningham
    • 

    corecore