7,529 research outputs found

    Think Globally, Act Locally: On the Optimal Seeding for Nonsubmodular Influence Maximization

    Get PDF
    We study the r-complex contagion influence maximization problem. In the influence maximization problem, one chooses a fixed number of initial seeds in a social network to maximize the spread of their influence. In the r-complex contagion model, each uninfected vertex in the network becomes infected if it has at least r infected neighbors. In this paper, we focus on a random graph model named the stochastic hierarchical blockmodel, which is a special case of the well-studied stochastic blockmodel. When the graph is not exceptionally sparse, in particular, when each edge appears with probability omega (n^{-(1+1/r)}), under certain mild assumptions, we prove that the optimal seeding strategy is to put all the seeds in a single community. This matches the intuition that in a nonsubmodular cascade model placing seeds near each other creates synergy. However, it sharply contrasts with the intuition for submodular cascade models (e.g., the independent cascade model and the linear threshold model) in which nearby seeds tend to erode each others\u27 effects. Finally, we show that this observation yields a polynomial time dynamic programming algorithm which outputs optimal seeds if each edge appears with a probability either in omega (n^{-(1+1/r)}) or in o (n^{-2})

    Stability of Influence Maximization

    Full text link
    The present article serves as an erratum to our paper of the same title, which was presented and published in the KDD 2014 conference. In that article, we claimed falsely that the objective function defined in Section 1.4 is non-monotone submodular. We are deeply indebted to Debmalya Mandal, Jean Pouget-Abadie and Yaron Singer for bringing to our attention a counter-example to that claim. Subsequent to becoming aware of the counter-example, we have shown that the objective function is in fact NP-hard to approximate to within a factor of O(n1−ϔ)O(n^{1-\epsilon}) for any Ï”>0\epsilon > 0. In an attempt to fix the record, the present article combines the problem motivation, models, and experimental results sections from the original incorrect article with the new hardness result. We would like readers to only cite and use this version (which will remain an unpublished note) instead of the incorrect conference version.Comment: Erratum of Paper "Stability of Influence Maximization" which was presented and published in the KDD1

    A reliability-based approach for influence maximization using the evidence theory

    Get PDF
    The influence maximization is the problem of finding a set of social network users, called influencers, that can trigger a large cascade of propagation. Influencers are very beneficial to make a marketing campaign goes viral through social networks for example. In this paper, we propose an influence measure that combines many influence indicators. Besides, we consider the reliability of each influence indicator and we present a distance-based process that allows to estimate the reliability of each indicator. The proposed measure is defined under the framework of the theory of belief functions. Furthermore, the reliability-based influence measure is used with an influence maximization model to select a set of users that are able to maximize the influence in the network. Finally, we present a set of experiments on a dataset collected from Twitter. These experiments show the performance of the proposed solution in detecting social influencers with good quality.Comment: 14 pages, 8 figures, DaWak 2017 conferenc
    • 

    corecore