820 research outputs found

    A maximal clique based multiobjective evolutionary algorithm for overlapping community detection

    Get PDF
    Detecting community structure has become one im-portant technique for studying complex networks. Although many community detection algorithms have been proposed, most of them focus on separated communities, where each node can be-long to only one community. However, in many real-world net-works, communities are often overlapped with each other. De-veloping overlapping community detection algorithms thus be-comes necessary. Along this avenue, this paper proposes a maxi-mal clique based multiobjective evolutionary algorithm for over-lapping community detection. In this algorithm, a new represen-tation scheme based on the introduced maximal-clique graph is presented. Since the maximal-clique graph is defined by using a set of maximal cliques of original graph as nodes and two maximal cliques are allowed to share the same nodes of the original graph, overlap is an intrinsic property of the maximal-clique graph. Attributing to this property, the new representation scheme al-lows multiobjective evolutionary algorithms to handle the over-lapping community detection problem in a way similar to that of the separated community detection, such that the optimization problems are simplified. As a result, the proposed algorithm could detect overlapping community structure with higher partition accuracy and lower computational cost when compared with the existing ones. The experiments on both synthetic and real-world networks validate the effectiveness and efficiency of the proposed algorithm

    Community Detection in Networks using Bio-inspired Optimization: Latest Developments, New Results and Perspectives with a Selection of Recent Meta-Heuristics

    Get PDF
    Detecting groups within a set of interconnected nodes is a widely addressed prob- lem that can model a diversity of applications. Unfortunately, detecting the opti- mal partition of a network is a computationally demanding task, usually conducted by means of optimization methods. Among them, randomized search heuristics have been proven to be efficient approaches. This manuscript is devoted to pro- viding an overview of community detection problems from the perspective of bio-inspired computation. To this end, we first review the recent history of this research area, placing emphasis on milestone studies contributed in the last five years. Next, we present an extensive experimental study to assess the performance of a selection of modern heuristics over weighted directed network instances. Specifically, we combine seven global search heuristics based on two different similarity metrics and eight heterogeneous search operators designed ad-hoc. We compare our methods with six different community detection techniques over a benchmark of 17 Lancichinetti-Fortunato-Radicchi network instances. Ranking statistics of the tested algorithms reveal that the proposed methods perform com- petitively, but the high variability of the rankings leads to the main conclusion: no clear winner can be declared. This finding aligns with community detection tools available in the literature that hinge on a sequential application of different algorithms in search for the best performing counterpart. We end our research by sharing our envisioned status of this area, for which we identify challenges and opportunities which should stimulate research efforts in years to come

    Pearson coefficient matrix for studying the correlation of community detection scores in multi-objective evolutionary algorithm

    Get PDF
    Assessing a community detection algorithm is a difficult task due to the absence of finding a standard definition for objective functions to accurately identify the structure of communities in complex networks. Traditional methods generally consider the detecting of community structure as a single objective issue while its optimization generally leads to restrict the solution to a specific property in the community structure. In the last decade, new community detection models have been developed. These are based on multi-objective formulation for the problem, while ensuring that more than one objective (normally two) can be simultaneously optimized to generate a set of non-dominated solutions. However the issue of which objectives should be co-optimized to enhance the efficiency of the algorithm is still an open area of research. In this paper, first we generate a candidate set of partitions by saving the last population that has been generated using single objective evolutionary algorithm (SOEA) and random partitions based on the true partition for a given complex network. We investigate the features of the structure of communities which found by fifteen existing objectives that have been used in literature for discovering communities. Then, we found the correlation between any two objectives using the pearson coefficient matrix. Extensive experiments on four real networks show that some objective functions have a strong correlation and others either neutral or weak correlations

    Community Detection in Complex Networks

    Get PDF
    Finding communities of connected individuals in social networks is essential for understanding our society and interactions within the network. Recently attention has turned to analyse these communities in complex network systems. In this thesis, we study three challenges. Firstly, analysing and evaluating the robustness of new and existing score functions as these functions are used to assess the community structure for a given network. Secondly, unfolding community structures in static social networks. Finally, detecting the dynamics of communities that change over time. The score functions are evaluated on different community structures. The behaviour of these functions is studied by migrating nodes randomly from their community to a random community in a given true partition until all nodes will be migrated far from their communities. Then Multi-Objective Evolutionary Algorithm Based Community Detection in Social Networks (MOEA-CD) is used to capture the intuition of community identi cation with dense connections within the community and sparse with others. This algorithm redirects the design of objective functions according to the nodes' relations within community and with other communities. This new model includes two new contradictory objectives, the rst is to maximise the internal neighbours for each node within a community and the second is to minimise the maximum external links for each node within a community with respect to its internal neighbours. Both of these objectives are optimised simultaneously to nd a set of estimated Pareto-optimal solutions where each solution corresponds to a network partition. Moreover, we propose a new local heuristic search, namely, the Neighbour Node Centrality (NNC) strategy which is combined with the proposed model to improve the performance of MOEA-CD to nd a local optimal solution. We also design an algorithm which produces community structures that evolve over time. Recognising that there may be many possible community structures that ex- plain the observed social network at each time step, in contrast to existing methods, which generally treat this as a coupled optimisation problem, we formulate the prob- lem in a Hidden Markov Model framework, which allows the most likely sequence of communities to be found using the Viterbi algorithm where there are many candi- date community structures which are generated using Multi-Objective Evolutionary Algorithm. To demonstrate that our study is effective, it is evaluated on synthetic and real-life dynamic networks and it is used to discover the changing Twitter communities of MPs preceding the Brexit referendum

    Community Detection in Complex Networks

    Get PDF
    Finding communities of connected individuals in social networks is essential for understanding our society and interactions within the network. Recently attention has turned to analyse these communities in complex network systems. In this thesis, we study three challenges. Firstly, analysing and evaluating the robustness of new and existing score functions as these functions are used to assess the community structure for a given network. Secondly, unfolding community structures in static social networks. Finally, detecting the dynamics of communities that change over time. The score functions are evaluated on different community structures. The behaviour of these functions is studied by migrating nodes randomly from their community to a random community in a given true partition until all nodes will be migrated far from their communities. Then Multi-Objective Evolutionary Algorithm Based Community Detection in Social Networks (MOEA-CD) is used to capture the intuition of community identi cation with dense connections within the community and sparse with others. This algorithm redirects the design of objective functions according to the nodes' relations within community and with other communities. This new model includes two new contradictory objectives, the rst is to maximise the internal neighbours for each node within a community and the second is to minimise the maximum external links for each node within a community with respect to its internal neighbours. Both of these objectives are optimised simultaneously to nd a set of estimated Pareto-optimal solutions where each solution corresponds to a network partition. Moreover, we propose a new local heuristic search, namely, the Neighbour Node Centrality (NNC) strategy which is combined with the proposed model to improve the performance of MOEA-CD to nd a local optimal solution. We also design an algorithm which produces community structures that evolve over time. Recognising that there may be many possible community structures that ex- plain the observed social network at each time step, in contrast to existing methods, which generally treat this as a coupled optimisation problem, we formulate the prob- lem in a Hidden Markov Model framework, which allows the most likely sequence of communities to be found using the Viterbi algorithm where there are many candi- date community structures which are generated using Multi-Objective Evolutionary Algorithm. To demonstrate that our study is effective, it is evaluated on synthetic and real-life dynamic networks and it is used to discover the changing Twitter communities of MPs preceding the Brexit referendum

    An Enhanced Multi-Objective Biogeography-Based Optimization Algorithm for Automatic Detection of Overlapping Communities in a Social Network with Node Attributes

    Full text link
    Community detection is one of the most important and interesting issues in social network analysis. In recent years, simultaneous considering of nodes' attributes and topological structures of social networks in the process of community detection has attracted the attentions of many scholars, and this consideration has been recently used in some community detection methods to increase their efficiencies and to enhance their performances in finding meaningful and relevant communities. But the problem is that most of these methods tend to find non-overlapping communities, while many real-world networks include communities that often overlap to some extent. In order to solve this problem, an evolutionary algorithm called MOBBO-OCD, which is based on multi-objective biogeography-based optimization (BBO), is proposed in this paper to automatically find overlapping communities in a social network with node attributes with synchronously considering the density of connections and the similarity of nodes' attributes in the network. In MOBBO-OCD, an extended locus-based adjacency representation called OLAR is introduced to encode and decode overlapping communities. Based on OLAR, a rank-based migration operator along with a novel two-phase mutation strategy and a new double-point crossover are used in the evolution process of MOBBO-OCD to effectively lead the population into the evolution path. In order to assess the performance of MOBBO-OCD, a new metric called alpha_SAEM is proposed in this paper, which is able to evaluate the goodness of both overlapping and non-overlapping partitions with considering the two aspects of node attributes and linkage structure. Quantitative evaluations reveal that MOBBO-OCD achieves favorable results which are quite superior to the results of 15 relevant community detection algorithms in the literature

    Louvain-like Methods for Community Detection in Multi-Layer Networks

    Full text link
    In many complex systems, entities interact with each other through complicated patterns that embed different relationships, thus generating networks with multiple levels and/or multiple types of edges. When trying to improve our understanding of those complex networks, it is of paramount importance to explicitly take the multiple layers of connectivity into account in the analysis. In this paper, we focus on detecting community structures in multi-layer networks, i.e., detecting groups of well-connected nodes shared among the layers, a very popular task that poses a lot of interesting questions and challenges. Most of the available algorithms in this context either reduce multi-layer networks to a single-layer network or try to extend algorithms for single-layer networks by using consensus clustering. Those approaches have anyway been criticized lately. They indeed ignore the connections among the different layers, hence giving low accuracy. To overcome these issues, we propose new community detection methods based on tailored Louvain-like strategies that simultaneously handle the multiple layers. We consider the informative case, where all layers show a community structure, and the noisy case, where some layers only add noise to the system. We report experiments on both artificial and real-world networks showing the effectiveness of the proposed strategies.Comment: 16 pages, 4 figure
    • …
    corecore