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ABSTRACT   

Assessing a community detection algorithm is a difficult task due to the absence of finding a standard 

definition for objective functions to accurately identify the structure of communities in complex networks. 

Traditional methods generally consider the detecting of community structure as a single objective issue 

while its optimization generally leads to restrict the solution to a specific property in the community 

structure. In the last decade, new community detection models have been developed. These are based on 

multi-objective formulation for the problem, while ensuring that more than one objective (normally two) 

can be simultaneously optimized to generate a set of non-dominated solutions. However the issue of which 

objectives should be co-optimized to enhance the efficiency of the algorithm is still an open area of 

research. In this paper, first we generate a candidate set of partitions by saving the last population that has 

been generated using single objective evolutionary algorithm (SOEA) and random partitions based on the 

true partition for a given complex network. We investigate the features of the structure of communities 

which found by fifteen existing objectives that have been used in literature for discovering communities. 

Then, we found the correlation between any two objectives using the pearson coefficient matrix. Extensive 

experiments on four real networks show that some objective functions have a strong correlation and others 

either neutral or weak correlations. 
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1. Introduction 

Community detection in network science aids us to visualize a large scale map of many real complex network 

systems to understand the structures and functions of these systems. Recently, a lot of research has been 

introduced to define and discover communities in complex networks and very relevant in network science. 

Communities can be grouped of related nodes in information networks [1], scientific collaboration networks 

[2], biological networks (protein-protein interaction networks), transportation networks [3], the metabolic 

networks, etc. Although the identification of communities is an interesting and currentlyhot topic, it has 

remained a complex task. 

The complex network can be represented as a graph where each node represents an object such as people in 

social networks, protein in biological networks and the connections between nodes are represented by links 

such as friendship or communication. The network is partitioned into groups of nodes, defined communities 

that have dense intra-connection and sparse inter-connection. However, the main problem with community 

detection is that there is no gold standard definition of community (nor should there be one), but there are 

many slightly different structures in networks that could be called communities. 

Detecting communities in real-world networks such as social, scientific collaboration networks, biological 

networks, transportation networks, metabolic networks or information networks is a problem of significant 

interest and vital research in recent years. Typically one or two objective function scores are chosen to capture 

the intuition of community structures. A given network is partitioned into structure of communities and each 

community is a group of nodes that has strong connections within a community than the external connections 
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with the other communities. There are many objectives that have been optimized, either optimizing one 

objective function or multi objectives [4, 5, 6, 7, 8, 9, 8]. Most the existing studies show that optimizing more 

than one objective produce more accurate network partition than the optimizing one objective as the 

community structure have different properties [5, 6, 10, 11, 12]. There are many objectives that have been 

used in the research area such as Community Fitness [13], Conductance [14], Community Score [15], 

Expansion, Internal Density [16], Normalized Cut and Ratio cut [17]. 

The literature, however, lacks which objectives are optimized to increase the accuracy of the network division. 

In this study a strategy will be proposed to generate a candidate set of partitions by including all partitions in 

the last population that has been generated by using the SOEA together with random partitions for a given 

network based on the true partition. After that, these partitions are evaluated by using the fifteen most popular 

objective functions in the literature and then find the strength of correlations among them using the pearson 

coefficient matrix [18]. This strategy has a vital role to determine which two contradictory objectives could be 

optimized effectively using multi-objective evolutionary algorithms (MOEAs) such as Multi-Objectives 

Evolutionary Algorithm with Decomposition (MOEA/D) [19] and Nondominated Sorting Genetic Algorithm 

II (NSGA-II) [20]. 

he rest of this paper is organized as follows: In section 2 the basic background is described for the community 

detection problem. In section 3 a variety of community detection measures are presented that have been 

proposed in the literature. The formulation for evaluating the objective functions that have been used for 

community detection problem is introduced in section 4.1. Based on this, section 5 provides a description for 

the real world networks and a discussion of experiment results. Finally, conclusions and future directions are 

presented in section 6. 

2. Preliminary 

In the literature, the problem formulation of community detection in the social network is divided into graph 

definition (partitioning or clustering) and finding a global solution to reflect an optimal graph partitioning 

method. Mathematically, for an undirected unweighted graph, a given network is modeled into G of N vertices 

or nodes, and M links or edges connecting between two vertices. Generally, G = (V,E), is a representation of a 

group V(G) = {v
1
,v

2
,… ,v

N
} of N vertices (i.e. N(G)= |V|) and a set E(G) of L connections between the nodes 

(i.e. L(G)= |E|). Each node is imposed to have certain connections with other nodes, and the degree of the 

node presents the total number of these connections. The structure of network G is represented by a symmetric 

matrix N × N denoted by adjacency matrix A. i,j ∈ {1,2,...,N}, an element A
ij 

=1 is in the matrix A if there 

exists a link between the vertices v
i 
and v

j
,otherwise A

ij 
=0 when no neighborhood relation exists. The rows 

and columns of the matrix are denoted by i and j respectively. Each element in the matrix associates with a 

single link between pair of nodes, and its value (1 or 0) refers to the existence or not of the neighborhood 

relation. It is noted that there is not any neighborhood relation between a node with itself, (when i = j), thus 

the elements in the matrix existing on the main diagonal are set to zero. 

Graphically, the goal of dividing the nodes and their edges into groups in a network is proposed to provide 

possible partitions or communities that have nodes with dense connections within its community and sparse 

across communities. Let C (G) is the all potential communities of the graph G. Under this assumption, a 

community divisions to be a set of communities, C
i 
⊂ G = {C

1
, C

2
,… , C

i
}, where C

i 
≠ ⊘,K is the number of 

communities and each C
i
 has a number of certain nodes denoted by n

i
. Vertex degree, l(v,C

i
), is the number of 

links between the vertex v, belongs to community C
i
, and other vertices in the whole network, which is 

defined by:  

 

 

 

 
 

For vertex v ∈ C
i
, the number of its links with the others, belong to other communities, can define as: 
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To end this, generally speaking, the total links of v ∈
i
, can divide as:  

 

Another assumption is explicitly specified, the links belonging to a particular community is vital for graph 

partitioning, and can also define as:  

 
 
 
where,          is the number of links not belonging to the community Ci (external edges),and         is the 

number of links belonging to the community Ci (internaledges). 

Two new definitions are also considered here, strong and weak communities, [21, 22]. The community C
i 
is 

strong when:  

 

 

 

The community    
is named a strong partition if its internal edges > its external edges, otherwise, it is named a 

weak partition. This finding is confirmed when every v, belong to the C
i
, makes the following condition:  

 

The two summations of           and           , belong to the   , are considered here to reflect a strong or 

weak community. A particular community could be strong when it has vertices having dense links (intra-

connection) within the community and sparse links (inter-connection) with the others, otherwise the 

community is weak. This finding can be achieved if strong vertices can belong to a particular community, 

when the internal degree of the vertices belonging to    with other vertices within the community, exceeds 

their external degree, which is a groups of vertices belonging to other communities. This criterion supports 

one main scope that the communities should depend on their properties, such as degree of community or node, 

rather than just depending on a quality function like modularity. 

 

3. Objective functions in community detection  

One of the most popular clustering measures that have been used in the literature is the Newman-Girvan 

modularity Q [23]. It is an efficient evaluation measure for discovering strength of communities in a given 

network. 

 
In 2008, Pizzuti has been used a single objective evolutionary algorithm (SOEA) for unfold community 

structures, arguably avoiding some of the issues associated with greedy search [15]. The model proposed in 

this work is the maximization of the Community Score (CS) defined as:  

 

 

 
Where, the size of the communities is regulated by r to increase the weight of the degree of the node that 

belongs to a given community. There are many alternative definitions of network partitions, where 

Lancichinetti et al. [13] proposed a different objective function named Community Fitness (CF), to find 
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communities in a network by determining higher peaks fitness histogram in a hierarchical community 

structure. The proposed function is defined as: 

 

 

 

 
where α is a positive value that regulates the scale of communities. 

In 2012, Shi et al. also formulated the problem of discovering of community structures as a multi-objective 

minimization problem [24]. The authors reformulate Modularity (Eq. 8) into two quantitative terms to use as 

two objective functions. The first is the intra-connection measure: 

 

 

 

While the second measures inter-connections: 

 

 

 

 
The Kernel K-Means (KKM) is a fantastic score reported in 2014 by Gong et al. [5] to find the community 

structures in complex networks [5]. The KKM works as a minimized function for creating small communities 

by measuring the sum of the internal degree of a particular community in a given network [25], which can be 

defined as: 

 

 

 
The Ratio Cut (RC) function which also works as a minimized function to cut the size of the partitions and 

provide balanced partitions [26]: 

 

 

 

 
Another known score the Expansion (EX), is also used to show external links centrality, which is adopted the 

idea of accounting all possible external connections [16]: 

 

 

 

 
The Normalized cut function (NC) [17], is also a minimized function that is used to cut the degree of 

communities within a given network rather than cutting their size, which is defined as: 

 

 

 
The Conductance function (CO) [14], is a cut-based function that measure the fraction of the totaledges of the 

nodes belonging to other communities in a given network, which is defined as: 

 

 

 

 
In contrast, the density of the internal links of the community can be scored by [22]: 
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The average-Out Degree Fraction (ODF) score is another measure [27]: 

 

 

 

 

 
The Triangle Participation Ratio (TPR) is a quality score to measure a set of nodes that belong to a triangle in 

a particular community [22], which is defined by: 

 

 

 

 

 

 

A multi-objective evolutionary algorithm was proposed in 2016 by Attea et al. to simultaneously reduce two 

contradictory scores to detect the structure of communities in social networks [10]. Both the so-called intra-

neighbor score (Q1) in Eq.22 and the inter-neighbor score (Q2) in Eq.23 are minimized by their model. 

 

 

 

 

 

 

Where NStrong(Ci) represents the number of node vi in community Ci that have lin (vi,Ci) > lout(vi,Ci). 

 

 

 

 

 

Where NWeak(Ci) represents the number of node vi in community Ci that have lin (vi,Ci) < lout(vi,Ci). 

 

Table 1: The numbers of objective functions represented in x-axis and y-axis in Figures 1,2,3 and 4 

Number Community Score References 

1 KKM [5] 

2 CS [15] 

3 Q [23] 

4 CF [13] 

5 TPR [22] 

6 EX [16] 

7 ODF [27] 

8 NC [17] 

9 Q1 [10] 

10 Q2 [10] 

11 Intra [24] 

12 Inter [24] 

13 CO [14] 

14 RC [26] 

15 ID [22] 
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4. Methodology  

4.1. Candidate set of partitions 

While various optimization functions have been reported in existing studies to identify community structure in 

networks, it is still unknown how well these objectives are correlated. In this paper, fifteen of these objectives 

are considered to discuss their performance where these objectives are already widely used to capture the 

intuition of communities in the literature, see Table 1. These objectives are Community Score, Community 

Fitness, Intra, Inter, Kernel K-means, Ratio Cut, Intra Neighbor and Inter Neighbor. In addition these 

objectives are the source for many community detection algorithms [28, 29, 6, 30, 31, 32, 33]. In this paper 

we proposed two methods for choosing candidate partitions to evaluate objective functions: 

 
A: Single Objective Evolutionary Algorithm 
 

In this study, we use Single Objective Evolutionary Algorithm (SOEA) to detect communities in a given 

network by employing Genetic Algorithm [34] for this purpose. A trial and error technique is used to 

determine parameter values, and then the parameter values that produced good results for the data sets are 

chosen. As a result, we set the crossover rate to 0.8, the mutation rate to 0.2, the population size is 100, and 

there are 100 generations. The accuracy of the detected partition is assessed using an external measure, the 

Normalized Mutual Information (NMI) [35], to approximate the similarity between the true and detected 

partitions. We apply SOEA on four real-world networks that have been extensively studied in the literature. 

The Zackary’s Karate Club network Zachary [36], the Bottlenose Dolphins Lusseau [37], the American 

College Football network [38], and the Krebs’ books on American politics [39]. Fifteen objectives are 

optimized for each network and with each objective we save the last population to be considered as good 

candidate partitions. In this case we have fifteen populations which represent good candidate partitions for 

each network to evaluate existing objectives. The last population could has true partition or close to the true 

partition. We point to the number of individuals (partitions) in the last population as Npop. 

 

B: Random partition based on true partition 

 

Random partitions for a given real world network are generated based on the true partitions. The true partition 

is not always has strong communities but generally speaking it is more similar to the nature partitions of 

networks. Each time random nodes are migrated from its community to random communities. Candidate 

partitions are selected because choosing all combinations of partitions is huge and it is impossible to choose 

all of them. In this strategy, the total number of candidate partitions is P where P = Npop      
   . At each 

iteration, i of nodes is migrated from its community to random communities. The first and second terms are 

calculated using the SOEA and the random partition method, see Algorithm 1. 

4.2. The correlation of objective functions based on Pearson Coefficient Matrix 

One of the most popular measures to find the correlation between two data sets is Pearson 

Coefficient Matrix. The range of Pearson Coefficient Matrix .(r) can be a value between -1 and 1, 

where 1 points to a strong correlation, 0 means no relationship between the two variables, and a 

weak correlation is shown by a value smaller than 0; that is, when one variable’s value drops, so does 

the value of the other [40]: 

 

 

 

 

 

 
where f1 and f2 represent the mean values of two different functions in candidate partitions. In this study 

fifteen objective functions are evaluated based on the candidate partitions and the correlation coefficient (r) 

between each pair of these objectives (see Eq 23). These calculations are used to find the statistical association 

strength between any pair of objectives. 
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This study is very effective to recognize the type of correlation between two objectives that could be used as 

contradictory objectives in multi-objective evolutionary algorithm to identify community structures in a given 

networks. 

 

5. Experiments 

This section discusses the actual correlations between objective functions that are a potential used for 

formulating the problem of the community detection. Fifteen objectives are considered here, which have been 

mostly presented in the literature. To analyze the strength of the correlation between each one with the others, 

experiments are carried on real networks which are Zachary Karate Club [36], Bottlenose Dolphins [37], 

American College Football team [38] and Krebs Books networks [39]. These networks have a well-known 

summery of real datasets that help to use for evaluating community detection according to the strength of 

correlation between the selected objectives. 

 

Each objective considers one or more properties when it works on these networks. Thus, the calculations of 

each objective are individually carried on the potential candidates of the community partitions to uncover the 

strength of relations and find the correlations between each objective and others. Objectives that have more 

correlated, they are less likely to be optimized using multi-objective evolutionary algorithm because the 

objectives that have more correlated tend to be similar performance. 

 
Figure 1. The correlation between the evaluation scores which have been used for evaluating Karate network 

partitions. The blue color points to weak correlation while the red color refers to the strong correlation. 
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Figure 2: The correlation between the evaluation scores which have been used for evaluating Dolphin network 

partitions. The blue color points to weak correlation while the red color refers to the strong correlation. 

 

 
Figure 3: The correlation between the evaluation scores which have been used for evaluating Karate network 

partitions. The blue color points to weak correlation while the red color refers to the strong correlation. 
 

 
Figure 4: The correlation between the evaluation scores which have been used for evaluating Dolphin network 

partitions. The blue color points to weak correlation while the red color refers to the strong correlation. 
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To understand the trends of the correlations, the computational relations between each pair of objectives are 

supposed to be either strong, weak or no correlation. For a quantitative analysis, color bar is used here for 

reflecting correlation among the objective functions. From Figures 1,2,3,4 , in general, the objectives ( KKM, 

EX, ODF, NC, Q1, Q2,  Intra, CO, RC and ID) are likely to have a similar performance among them with a 

strong correlation (in red color) comparing with other objectives with a weak correlation (in blue color), such 

as SC, Q, CF and TRF. Further, the objective 'Inter' has a moderate correlation with all other objectives. We 

can see the distribution of correlation strength according to the evaluated values of both objective functions 

from the candidate set partitions. These values are calculated using Pearson Coefficient Matrix. The 

correlation, in red square, shows that there is high strength correlation between the functions while the blue 

square represents low correlations (weak correlation). Other colored squares show a neutral or no correlations 

among functions. In order to produce more accurate correlation between objectives, another candidate set 

partitions should be generated. 

Throughout our experiments, a set of group of results are presented in Tables (2- 5). The results display the 

correlation between each pair of objectives using Pearson Coefficient Matrix on four real world networks. The 

high number refers to high correlated between pair of objectives and corresponds to red color (more 

correlated) in Figures 1, 2, 3, 4. On the other hand, the smallest number refers to weak correlated (blue color). 

As a result, we avoid choosing the high correlated functions in multi-objective evolutionary algorithms as 

these objectives have the same or similar performance that could be naturally unsuitable to formulate 

multiobjective evolutionary algorithm for community detection problems. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Table 3. The correlation values of 15 objectives are found using Pearson Coefficient Matrix for Dolphin 

network 

Name KKM CS Q CF TPR EX ODF NC Q1 Q2 Intra Inter CO RC ID 

KKM 1.000 -0.993 -0.998 -0.980 -0.975 0.995 0.989 0.999 0.996 0.954 0.989 -0.624 0.999 0.995 0.990 

CS -0.993 1.000 0.985 0.978 0.985 -0.996 -0.982 -0.994 -0.984 -0.940 -0.992 0.682 -0.994 -0.996 -0.982 

Q -0.998 0.985 1.000 0.975 0.965 -0.990 -0.985 -0.996 -0.995 -0.955 -0.982 0.585 -0.996 -0.990 -0.981 

CF -0.980 0.978 0.975 1.000 0.968 -0.982 -0.971 -0.981 -0.983 -0.972 -0.987 0.695 -0.981 -0.982 -0.970 

TPR -0.975 0.985 0.965 0.968 1.000 -0.986 -0.960 -0.977 -0.967 -0.935 -0.993 0.757 -0.977 -0.986 -0.963 

EX 0.995 -0.996 -0.990 -0.982 -0.986 1.000 0.990 0.996 0.991 0.953 0.995 -0.675 0.996 1.000 0.979 

ODF 0.989 -0.982 -0.985 -0.971 -0.960 0.990 1.000 0.989 0.987 0.948 0.979 -0.624 0.989 0.990 0.973 

NC 0.999 -0.994 -0.996 -0.981 -0.977 0.996 0.989 1.000 0.995 0.952 0.990 -0.634 1.000 0.996 0.989 

Table 2. The correlation values of 15 objectives are found using pearson coefficient matrix for 

karate network 

Name KKM CS Q CF TPR EX ODF NC Q1 Q2 Intra Inter CO RC ID 

KKM 1.000 -0.995 -0.987 -0.984 -0.980 0.998 0.996 1.000 0.994 0.921 0.985 0.076 1.000 0.998 0.943 

CS -0.995 1.000 0.988 0.985 0.985 -0.994 -0.984 -0.992 -0.984 -0.903 -0.986 -0.081 -0.992 -0.994 -0.921 

Q -0.997 0.973 1.000 0.979 0.971 -0.989 -0.985 -1.000 -0.990 -0.921 -0.985 -0.325 -1.000 -0.989 -0.981 

CF -0.977 0.967 0.979 1.000 0.966 -0.984 -0.971 -0.979 -0.977 -0.938 -0.988 -0.187 -0.979 -0.984 -0.950 

TPR -0.971 0.970 0.971 0.966 1.000 -0.979 -0.954 -0.970 -0.954 -0.888 -0.985 -0.158 -0.970 -0.979 -0.943 

EX 0.990 -0.984 -0.989 -0.984 -0.979 1.000 0.988 0.988 0.983 0.923 0.995 0.206 0.988 1.000 0.956 

ODF 0.983 -0.961 -0.985 -0.971 -0.954 0.988 1.000 0.986 0.985 0.937 0.980 0.264 0.986 0.988 0.955 

NC 0.997 -0.971 -1.000 -0.979 -0.970 0.988 0.986 1.000 0.991 0.923 0.985 0.322 1.000 0.988 0.982 

Q1 0.992 -0.968 -0.990 -0.977 -0.954 0.983 0.985 0.991 1.000 0.956 0.978 0.309 0.991 0.983 0.978 

Q2 0.916 -0.891 -0.921 -0.938 -0.888 0.923 0.937 0.923 0.956 1.000 0.927 0.193 0.923 0.923 0.888 

Intra 0.986 -0.983 -0.985 -0.988 -0.985 0.995 0.980 0.985 0.978 0.927 1.000 0.158 0.985 0.995 0.956 

Inter 0.300 -0.181 -0.325 -0.187 -0.158 0.206 0.264 0.322 0.309 0.193 0.158 1.000 0.322 0.206 0.374 

CO 0.997 -0.971 -1.000 -0.979 -0.970 0.988 0.986 1.000 0.991 0.923 0.985 0.322 1.000 0.988 0.982 

RC 0.990 -0.984 -0.989 -0.984 -0.979 1.000 0.988 0.988 0.983 0.923 0.995 0.206 0.988 1.000 0.956 

ID 0.987 -0.958 -0.981 -0.950 -0.943 0.956 0.955 0.982 0.978 0.888 0.956 0.374 0.982 0.956 1.000 

 
                

                

                

                

                

                

 



 PEN Vol. 9, No. 3, September 2021, pp.796-807 

805 

Name KKM CS Q CF TPR EX ODF NC Q1 Q2 Intra Inter CO RC ID 

Q1 0.996 -0.984 -0.995 -0.983 -0.967 0.991 0.987 0.995 1.000 0.974 0.985 -0.615 0.995 0.991 0.984 

Q2 0.954 -0.940 -0.955 -0.972 -0.935 0.953 0.948 0.952 0.974 1.000 0.959 -0.651 0.952 0.953 0.936 

Intra 0.989 -0.992 -0.982 -0.987 -0.993 0.995 0.979 0.990 0.985 0.959 1.000 -0.728 0.990 0.995 0.977 

Inter -0.624 0.682 0.585 0.695 0.757 -0.675 -0.624 -0.634 -0.615 -0.651 -0.728 1.000 -0.634 -0.675 -0.632 

CO 0.999 -0.994 -0.996 -0.981 -0.977 0.996 0.989 1.000 0.995 0.952 0.990 -0.634 1.000 0.996 0.989 

RC 0.995 -0.996 -0.990 -0.982 -0.986 1.000 0.990 0.996 0.991 0.953 0.995 -0.675 0.996 1.000 0.979 

ID 0.990 -0.982 -0.981 -0.970 -0.963 0.979 0.973 0.989 0.984 0.936 0.977 -0.632 0.989 0.979 1.000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Conclusion 
This paper presents the correlation between two objectives to determine whether they have pairwise strong or 

weak correlation. This will, in turn, help scholars how to select a pair of contradictory objectives to properly 

Table 4: The correlation values of 15 objectives are found using Pearson Coefficient Matrix for 

American Football network. 

Name KKM CS Q CF TPR EX ODF NC Q1 Q2 Intra Inter CO RC ID 

KKM 1.000 -0.995 -0.987 -0.984 -0.980 0.998 0.996 1.000 0.994 0.921 0.985 0.076 1.000 0.998 0.943 

CS -0.995 1.000 0.988 0.985 0.985 -0.994 -0.984 -0.992 -0.984 -0.903 -0.986 -0.081 -0.992 -0.994 -0.921 

Q -0.987 0.988 1.000 0.999 0.997 -0.990 -0.976 -0.987 -0.976 -0.918 -1.000 -0.018 -0.987 -0.992 -0.892 

CF -0.984 0.985 0.999 1.000 0.997 -0.987 -0.973 -0.984 -0.972 -0.916 -1.000 0.014 -0.984 -0.989 -0.892 

TPR -0.980 0.985 0.997 0.997 1.000 -0.984 -0.966 -0.979 -0.967 -0.906 -0.997 0.011 -0.979 -0.986 -0.885 

EX 0.998 -0.994 -0.990 -0.987 -0.984 1.000 0.995 0.998 0.992 0.925 0.988 0.055 0.998 1.000 0.933 

ODF 0.996 -0.984 -0.976 -0.973 -0.966 0.995 1.000 0.996 0.992 0.922 0.974 0.059 0.996 0.994 0.956 

NC 1.000 -0.992 -0.987 -0.984 -0.979 0.998 0.996 1.000 0.993 0.923 0.985 0.069 1.000 0.998 0.943 

Q1 0.994 -0.984 -0.976 -0.972 -0.967 0.992 0.992 0.993 1.000 0.953 0.973 0.097 0.993 0.991 0.937 

Q2 0.921 -0.903 -0.918 -0.916 -0.906 0.925 0.922 0.923 0.953 1.000 0.917 0.039 0.923 0.925 0.839 

Intra 0.985 -0.986 -1.000 -1.000 -0.997 0.988 0.974 0.985 0.973 0.917 1.000 -0.011 0.985 0.990 0.893 

Inter 0.076 -0.081 -0.018 0.014 0.011 0.055 0.059 0.069 0.097 0.039 -0.011 1.000 0.069 0.050 -0.030 

CO 1.000 -0.992 -0.987 -0.984 -0.979 0.998 0.996 1.000 0.993 0.923 0.985 0.069 1.000 0.998 0.943 

RC 0.998 -0.994 -0.992 -0.989 -0.986 1.000 0.994 0.998 0.991 0.925 0.990 0.050 0.998 1.000 0.930 

ID 0.943 -0.921 -0.892 -0.892 -0.885 0.933 0.956 0.943 0.937 0.839 0.893 -0.030 0.943 0.930 1.000 

 
                

                

                

                

                

                

                

                

                

                

                

 

Table 5: The correlation values of 15 objectives are found using Pearson Coefficient Matrix for 

Krebs Books network. 

Name KKM CS Q CF TPR EX ODF NC Q1 Q2 Intra Inter CO RC ID 

KKM 1.000 -0.967 -0.968 -0.898 -0.908 0.923 0.899 0.993 0.985 0.733 0.922 -0.293 0.993 0.949 0.904 

CS -0.967 1.000 0.981 0.937 0.960 -0.948 -0.873 -0.946 -0.941 -0.790 -0.970 0.434 -0.946 -0.980 -0.784 

Q -0.968 0.981 1.000 0.953 0.955 -0.892 -0.809 -0.956 -0.943 -0.811 -0.972 0.379 -0.956 -0.947 -0.826 

CF -0.898 0.937 0.953 1.000 0.947 -0.884 -0.781 -0.904 -0.878 -0.885 -0.978 0.568 -0.904 -0.93 -0.778 

TPR -0.908 0.960 0.955 0.947 1.000 -0.926 -0.819 -0.904 -0.865 -0.798 -0.990 0.604 -0.904 -0.967 -0.758 

EX 0.923 -0.948 -0.892 -0.884 -0.926 1.000 0.965 0.918 0.894 0.724 0.925 -0.566 0.918 0.988 0.778 

ODF 0.899 -0.873 -0.809 -0.781 -0.819 0.965 1.000 0.903 0.882 0.617 0.821 -0.443 0.903 0.927 0.818 

NC 0.993 -0.946 -0.956 -0.904 -0.904 0.918 0.903 1.000 0.977 0.734 0.920 -0.325 1.000 0.943 0.939 

Q1 0.985 -0.941 -0.943 -0.878 -0.865 0.894 0.882 0.977 1.000 0.778 0.886 -0.238 0.977 0.919 0.895 

Q2 0.733 -0.790 -0.811 -0.885 -0.798 0.724 0.617 0.734 0.778 1.000 0.840 -0.513 0.734 0.781 0.603 

Intra 0.922 -0.970 -0.972 -0.978 -0.990 0.925 0.821 0.920 0.886 0.840 1.000 -0.586 0.920 0.971 0.776 

Inter -0.293 0.434 0.379 0.568 0.604 -0.566 -0.443 -0.325 -0.238 -0.513 0.586 1.000 -0.325 -0.556 -0.209 

CO 0.993 -0.946 -0.956 -0.904 -0.904 0.918 0.903 1.000 0.977 0.734 0.920 -0.325 1.000 0.943 0.939 

RC 0.949 -0.980 -0.947 -0.937 -0.967 0.988 0.927 0.943 0.919 0.781 0.971 -0.556 0.943 1.000 0.798 

ID 0.904 -0.784 -0.826 -0.778 -0.758 0.778 0.818 0.939 0.895 0.603 0.776 -0.209 0.939 0.798 1.000 
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define the community detection problem as a multi-objective optimization problem. The proposed method 

includes two steps. First, a set of candidate partitions is generated and evolved using SOEA. This is associated 

with a random strategy to generate candidate partitions based on the true partition by migrating nodes from 

their communities to random communities. Second, the most popular fifteen objectives provided in the 

literature are evaluated with respect to these partitions to find the pairwise correlation between these 

objectives using Pearson Coefficient Matrix. The investigation of the correlations is very important since more 

weakness in the correlations means more contradiction in their semantics. As a future work, it would be 

interesting to use two objectives that have less correlation in the MOEA based community detection. Another 

direction for the future is to investigate another candidate partitions that could be used to find the correlations 

between any two objectives as it is difficult to consider all combinations of partitions. 
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