269,749 research outputs found

    Community Detection in Quantum Complex Networks

    Full text link
    Determining community structure is a central topic in the study of complex networks, be it technological, social, biological or chemical, in static or interacting systems. In this paper, we extend the concept of community detection from classical to quantum systems---a crucial missing component of a theory of complex networks based on quantum mechanics. We demonstrate that certain quantum mechanical effects cannot be captured using current classical complex network tools and provide new methods that overcome these problems. Our approaches are based on defining closeness measures between nodes, and then maximizing modularity with hierarchical clustering. Our closeness functions are based on quantum transport probability and state fidelity, two important quantities in quantum information theory. To illustrate the effectiveness of our approach in detecting community structure in quantum systems, we provide several examples, including a naturally occurring light-harvesting complex, LHCII. The prediction of our simplest algorithm, semiclassical in nature, mostly agrees with a proposed partitioning for the LHCII found in quantum chemistry literature, whereas our fully quantum treatment of the problem uncovers a new, consistent, and appropriately quantum community structure.Comment: 16 pages, 4 figures, 1 tabl

    Community detection in complex networks using Extremal Optimization

    Full text link
    We propose a novel method to find the community structure in complex networks based on an extremal optimization of the value of modularity. The method outperforms the optimal modularity found by the existing algorithms in the literature. We present the results of the algorithm for computer simulated and real networks and compare them with other approaches. The efficiency and accuracy of the method make it feasible to be used for the accurate identification of community structure in large complex networks.Comment: 4 pages, 4 figure

    Community Structure Detection in Complex Networks with Partial Background Information

    Full text link
    Constrained clustering has been well-studied in the unsupervised learning society. However, how to encode constraints into community structure detection, within complex networks, remains a challenging problem. In this paper, we propose a semi-supervised learning framework for community structure detection. This framework implicitly encodes the must-link and cannot-link constraints by modifying the adjacency matrix of network, which can also be regarded as de-noising the consensus matrix of community structures. Our proposed method gives consideration to both the topology and the functions (background information) of complex network, which enhances the interpretability of the results. The comparisons performed on both the synthetic benchmarks and the real-world networks show that the proposed framework can significantly improve the community detection performance with few constraints, which makes it an attractive methodology in the analysis of complex networks

    Community Detection in Complex Networks

    Get PDF
    Finding communities of connected individuals in social networks is essential for understanding our society and interactions within the network. Recently attention has turned to analyse these communities in complex network systems. In this thesis, we study three challenges. Firstly, analysing and evaluating the robustness of new and existing score functions as these functions are used to assess the community structure for a given network. Secondly, unfolding community structures in static social networks. Finally, detecting the dynamics of communities that change over time. The score functions are evaluated on different community structures. The behaviour of these functions is studied by migrating nodes randomly from their community to a random community in a given true partition until all nodes will be migrated far from their communities. Then Multi-Objective Evolutionary Algorithm Based Community Detection in Social Networks (MOEA-CD) is used to capture the intuition of community identi cation with dense connections within the community and sparse with others. This algorithm redirects the design of objective functions according to the nodes' relations within community and with other communities. This new model includes two new contradictory objectives, the rst is to maximise the internal neighbours for each node within a community and the second is to minimise the maximum external links for each node within a community with respect to its internal neighbours. Both of these objectives are optimised simultaneously to nd a set of estimated Pareto-optimal solutions where each solution corresponds to a network partition. Moreover, we propose a new local heuristic search, namely, the Neighbour Node Centrality (NNC) strategy which is combined with the proposed model to improve the performance of MOEA-CD to nd a local optimal solution. We also design an algorithm which produces community structures that evolve over time. Recognising that there may be many possible community structures that ex- plain the observed social network at each time step, in contrast to existing methods, which generally treat this as a coupled optimisation problem, we formulate the prob- lem in a Hidden Markov Model framework, which allows the most likely sequence of communities to be found using the Viterbi algorithm where there are many candi- date community structures which are generated using Multi-Objective Evolutionary Algorithm. To demonstrate that our study is effective, it is evaluated on synthetic and real-life dynamic networks and it is used to discover the changing Twitter communities of MPs preceding the Brexit referendum

    Community Detection in Complex Networks

    Get PDF
    The stochastic block model is a powerful tool for inferring community structure from network topology. However, the simple block model considers community structure as the only underlying attribute for forming the relational interactions among the nodes, this makes it prefer a Poisson degree distribution within each community, while most real-world networks have a heavy-tailed degree distribution. This is essentially because the simple assumption under the traditional block model is not consistent with some real-world circumstances where factors other than the community memberships such as overall popularity also heavily affect the pattern of the relational interactions. The degree-corrected block model can accommodate arbitrary degree distributions within communities by taking nodes\u27 popularity or degree into account. But since it takes the vertex degrees as parameters rather than generating them, it cannot use them to help it classify the vertices, and its natural generalization to directed graphs cannot even use the orientations of the edges. We developed several variants of the block model with the best of both worlds: they can use vertex degrees and edge orientations in the classification process, while tolerating heavy-tailed degree distributions within communities. We show that for some networks, including synthetic networks and networks of word adjacencies in English text, these new block models achieve a higher accuracy than either standard or degree-corrected block models. Another part of my work is to develop even more generalized block models, which incorporates other attributes of the nodes. Many data sets contain rich information about objects, as well as pairwise relations between them. For instance, in networks of websites, scientific papers, patents and other documents, each node has content consisting of a collection of words, as well as hyperlinks or citations to other nodes. In order to perform inference on such data sets, and make predictions and recommendations, it is useful to have models that are able to capture the processes which generate the text at each node as well as the links between them. Our work combines classic ideas in topic modeling with a variant of the mixed-membership block model recently developed in the statistical physics community. The resulting model has the advantage that its parameters, including the mixture of topics of each document and the resulting overlapping communities, can be inferred with a simple and scalable expectation- maximization algorithm. We test our model on three data sets, performing unsupervised topic classification and link prediction. For both tasks, our model outperforms several existing state-of-the-art methods, achieving higher accuracy with significantly less computation, analyzing a data set with 1.3 million words and 44 thousand links in a few minutes

    Community Detection in Complex Networks

    Get PDF
    Finding communities of connected individuals in social networks is essential for understanding our society and interactions within the network. Recently attention has turned to analyse these communities in complex network systems. In this thesis, we study three challenges. Firstly, analysing and evaluating the robustness of new and existing score functions as these functions are used to assess the community structure for a given network. Secondly, unfolding community structures in static social networks. Finally, detecting the dynamics of communities that change over time. The score functions are evaluated on different community structures. The behaviour of these functions is studied by migrating nodes randomly from their community to a random community in a given true partition until all nodes will be migrated far from their communities. Then Multi-Objective Evolutionary Algorithm Based Community Detection in Social Networks (MOEA-CD) is used to capture the intuition of community identi cation with dense connections within the community and sparse with others. This algorithm redirects the design of objective functions according to the nodes' relations within community and with other communities. This new model includes two new contradictory objectives, the rst is to maximise the internal neighbours for each node within a community and the second is to minimise the maximum external links for each node within a community with respect to its internal neighbours. Both of these objectives are optimised simultaneously to nd a set of estimated Pareto-optimal solutions where each solution corresponds to a network partition. Moreover, we propose a new local heuristic search, namely, the Neighbour Node Centrality (NNC) strategy which is combined with the proposed model to improve the performance of MOEA-CD to nd a local optimal solution. We also design an algorithm which produces community structures that evolve over time. Recognising that there may be many possible community structures that ex- plain the observed social network at each time step, in contrast to existing methods, which generally treat this as a coupled optimisation problem, we formulate the prob- lem in a Hidden Markov Model framework, which allows the most likely sequence of communities to be found using the Viterbi algorithm where there are many candi- date community structures which are generated using Multi-Objective Evolutionary Algorithm. To demonstrate that our study is effective, it is evaluated on synthetic and real-life dynamic networks and it is used to discover the changing Twitter communities of MPs preceding the Brexit referendum
    • …
    corecore