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Abstract

The stochastic block model is a powerful tool for inferring community structure

from network topology. However, the simple block model considers community struc-

ture as the only underlying attribute for forming the relational interactions among

the nodes, this makes it prefer a Poisson degree distribution within each communi-

ty, while most real-world networks have a heavy-tailed degree distribution. This is

essentially because the simple assumption under the traditional block model is not

consistent with some real-world circumstances where factors other than the commu-

nity memberships such as overall popularity also heavily affect the pattern of the

relational interactions. The degree-corrected block model can accommodate arbi-

trary degree distributions within communities by taking nodes’ popularity or degree

into account. But since it takes the vertex degrees as parameters rather than gen-

erating them, it cannot use them to help it classify the vertices, and its natural

generalization to directed graphs cannot even use the orientations of the edges.

We developed several variants of the block model with the best of both worlds:
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they can use vertex degrees and edge orientations in the classification process, while

tolerating heavy-tailed degree distributions within communities. We show that for

some networks, including synthetic networks and networks of word adjacencies in

English text, these new block models achieve a higher accuracy than either standard

or degree-corrected block models.

Another part of my work is to develop even more generalized block models, which

incorporates other attributes of the nodes. Many data sets contain rich information

about objects, as well as pairwise relations between them. For instance, in networks

of websites, scientific papers, patents and other documents, each node has content

consisting of a collection of words, as well as hyperlinks or citations to other nodes.

In order to perform inference on such data sets, and make predictions and recom-

mendations, it is useful to have models that are able to capture the processes which

generate the text at each node as well as the links between them. Our work combines

classic ideas in topic modeling with a variant of the mixed-membership block model

recently developed in the statistical physics community. The resulting model has the

advantage that its parameters, including the mixture of topics of each document and

the resulting overlapping communities, can be inferred with a simple and scalable

expectation- maximization algorithm.

We test our model on three data sets, performing unsupervised topic classification

and link prediction. For both tasks, our model outperforms several existing state-

of-the-art methods, achieving higher accuracy with significantly less computation,

analyzing a data set with 1.3 million words and 44 thousand links in a few minutes.
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Chapter 1

Introduction

Complex networks are prevalent in the real world and have been widely studied in

many different areas including social networks, technological and information net-

works and biological networks. These networks typically exhibit non-trivial topolog-

ical features, like heavy-tail degree distributions, high clustering coefficients, assorta-

tive or disassortative mixing patterns and so on. One of the key questions in complex

network analysis revolves around the identification of hidden community structure

or clusters based on the observed topological information. Community structure de-

tection for complex networks provides guidance for further study of these networks.

The stochastic block model (sbm) [23, 31, 51, 2] is a widely used and highly flexible

generative model for community detection in complex networks. As a generative

model, sbm formally models the generative process of network topology given the

hidden community membership of the nodes.

Traditionally, the block model infers latent group structure from the connection

pattern. Nodes of the networks are partitioned into blocks. The distribution of the

edges between nodes depends on the blocks to which the nodes belong. Here the block

to which a node belongs can be viewed as a hidden attribute of that node. Then the
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Chapter 1. Introduction

block assignments can be viewed as random variables which affect the relationships

among the nodes, i.e., the edges connecting those nodes. The underlying assumption

of the stochastic block model is that the nodes belonging to the same block are

stochastically equivalent in the sense that the probabilities of the relationships with

all other nodes are the same for all nodes in the same block.

However, besides the hidden attribute (i.e., the latent group membership) node

other attributes may also affect its relationships with other nodes. One such at-

tribute is node degree. Block models which don’t incorporate the information of

node degrees, group nodes with similar degrees. This is not true for many real-

world networks, where nodes with highly skewed degrees can be in the same block.

A natural extension to handle this is to think about both block assignment and

degree as covariates of the relational structure of the data. Recently, Karrer and

Newman [33] developed a generalized block model called the degree-corrected block

model, to incorporate node degrees. This elaborate block model assumes that the

expected number of links between two nodes are proportional to their degrees.

As an extension of that model, we developed a degree-corrected block model called

the directed degree-corrected block model (ddc) for directed graphs. We found that

ddc works well for some networks but it cannot use the edge orientation information

for those networks where the inter-community connections are highly directed, i.e.,

most of the edges between two blocks direct from one to another. To fill this gap,

we developed another model called the oriented degree-corrected block model which

first generates the undirected network and then generates the edge orientations.

Non-degree-corrected block models assume similar degrees within communities.

On the other hand, degree-corrected models prefer highly skewed degree distributions

in each community. What if we want both, Poisson degree distribution in block 1

and power-law degree distribution in block 2? Or more generally, how can we use

domain knowledge about the degree distributions of the community structure we are

2



Chapter 1. Introduction

looking for? To address this, we introduced degree generation (dg) for the degree-

corrected block models to take advantage of the domain knowledge about the degree

distributions in each community. dg first generates average degrees according to the

domain knowledge and then applies the degreee-corrected block mdoel to discover

the communities.

Besides the hidden community membership and the degree, other node attributes

may also provide valuable information for community detection. In that case, an

even more generalized block model should incorporate them too. For example, in

document citation networks, or online web pages, we have text for each document

besides the links for document pairs. Here the links are the citation relationships

or hyperlinks. We developed the Poisson mixed-topic link models (pmtlm) which

are able to detect community structures based on both text and links. pmtlm is

a combination of the mixed-membership stochastic block model, which we call the

“Ball-Karrer-Newman” (bkn) model [7], and the probabilitic latent semantic analysis

(plsa) [30] model.

As described above, this dissertation focuses on generalizing stochastic block

models for community detection in complex networks, including the degree-corrected

block models for directed networks, degree generation and the mixed-topic link mod-

els which analyses both text and links. Contributions include:

1. We extended the Karrer-Newman degree-corrected block model [33] to directed

networks. New models include directed degree-corrected and oriented degree-

corrected block models. We analyzed the strengths and weaknesses of the var-

ious versions of the block model and provided guidance on how to apply these

models for community detection. We introduced degree generation for degree-

corrected block models. As a generative model, degree generation generates

node expected degrees, allows the model to capture the interaction between

the degree distribution and the community structure. In particular, degree

3



Chapter 1. Introduction

generation automatically strikes a balance between allowing vertices of differ-

ent degrees to coexist in the same community on the one hand, and using

vertex degrees to separate vertices into communities on the other. We believe

our work provides valuable theoretical and experimental support for guiding

the application of these models to detect different kinds of community struc-

tures. Furthermore, such analysis and understanding is vital for developing

new block models on other specific networks.

2. The mixed-topic link model explores a new way to incorporate node rich in-

formation into link-based stochastic block models. The new model combines

a classic content-based topic model, which is called the probabilitic latent se-

mantic analysis (plsa) [30] and the bkn [7] mixed membership block model.

We developed a simple and highly efficient inference algorithm, which is linear

in the size of the data set. Experiments on real-world data sets show that the

new model achieves the state-of-the-art performance on both document classi-

fication and link prediciton tasks. Some related issues like balancing content

and links, applying local search optimization and predicting the missing links

are all addressed.

The following chapters are organized as follows: Chapter 2 reviews the background

and the related work. Chapter 3 presents degree-corrected block models for directed

networks and degree-generation. Chapter 4 discusses the mixed-topic link model-

s. Chapter 5 gives the conclusion of the current work and Chapter 6 talks about

some future directions.

4



Chapter 2

Background

2.1 Community detection in complex networks

In many real-world networks, vertices can be divided into communities based on

their connections. Social networks can be forged by daily interactions like karate

training [58], the blogosphere contains groups of linked blogs with similar political

views [1], words can be tagged as different parts of speech based on their adjacencies

in large texts [48], and so on. One of the key questions in complex network analysis

revolves around the identification of the hidden community structure.

Community structures can be very different in real-world networks. Communities

range from assortative clumps, where vertices preferentially attach to others of the

same type, to functional communities of vertices that connect to the rest of the

network in similar ways, such as groups of predators in a food web that feed on

similar prey [5, 42]. Networks may exhibit hierarchical community organization, in

which communities are associated to levels or scales and communities on higher levels

contain sub-communities on lower levels. By contrast, a flat structure assumes that

all communities are at the same level. Communities may overlap, in which nodes
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Chapter 2. Background

can involve several communities simultaneously. By contrast, a non-overlapping

community structure only consists of disjoint communities. Understanding various

community structures, and their relations to the functional roles of vertices and edges,

is crucial to understanding network data and providing a very helpful guidance for

further study of those networks.

2.2 Stochastic block modeling

The stochastic block model (sbm) [23, 31, 51, 2] is a popular and highly flexible gen-

erative model for community detection. It partitions the vertices into communities

or blocks, where vertices belonging to the same block are stochastically equivalent [53]

in the sense that the probabilities of a connection with all other vertices are the same

for all vertices in the same block. With this rather general definition of community,

block models can capture many types of community structure, including assortative,

disassortative, and satellite communities and mixtures of them [45, 46, 43, 42, 21, 20].

The purpose of block modeling [35, 54] is to partition the node set into subsets–

blocks, where nodes belong to the same block are structurally equivalent [35]. In

such a way we hope the block structure and the edge pattern between the blocks

can capture the main structural features of the graph. Stochastic modeling [32]

is another approach to relational data analysis. These two approaches have their

own strengths and weaknesses, but they are strongly complementary [31]. Fienberg

and Wasserman [23] and Holland, Laskey and Leinhardt [31] extended the concept

of block modeling to a stochastic version, which is the integration of those two

approaches that hopefully can overcome the limitations of each while creating a

statistical methodology that is consistent, effective and broadly applicable. Under

such a model, the nodes belong to the same block are stochastically equivalent [53]

in the sense that the probabilities of the relationships with all other nodes are the

6



Chapter 2. Background

same for all nodes in the same block. Based on the concept of stochastic equivalence,

stochastic block modeling can detect group memberships of the interact nodes for

both assortative and disassortative mixing [46]. Here assortativity is a bias in favor

of connections between nodes with similar characteristics, and disassortativity is

a bias in favor of connections between dissimilar nodes. In social networks, for

example, individuals commonly choose to associate with others of similar features as

themselves, which is also known as homophily [39, 24]. In networks of sexual contact,

the mixing is disassortative by gender - most partnerships are between individuals of

opposite sex. Food webs also present disassortative mixing, as species on the same

trophic level mostly interact with species on other levels [25, 42].

As a generative model, the block model can be used to generate stochastic net-

works if the blocks are known. In this project, we assume the blocks are unobserved

(latent), and we establish block models for detecting those latent blocks. This is

sometimes called a posteriori block modeling [53, 6, 33, 55]. Traditionally, the block

model infers latent group structure from connection patterns. Nodes of the network

are partitioned into blocks. The distribution of the edges between nodes is dependent

on the blocks to which the nodes belong. Here the block to which a node belongs can

be viewed as a hidden attribute of that node. Then the block memberships can be

viewed as random variables which affect the relationships among the nodes, i.e., the

edges connecting those nodes. The underlying assumption of the stochastic block

model is that the nodes belonging to the same block are stochastically equivalent in

the sense that the probabilities of the relationships with all other nodes are the same

for all nodes in the same block.

2.2.1 Generative model

We have the variable Y , which can be discrete values or labels for classification prob-

lems, or continuous values for regression problems. We also have the observed data

7



Chapter 2. Background

X. What we are interested in is the conditional probability of the Y given the data

X, i.e., p(Y |X). There are two categories of models to calculate this conditional

probability distribution: discriminative models and generative models. Discrimina-

tive models work on the conditional probability p(Y |X). Some well known examples

include linear regression, logistic regression, support vector machines and neural net-

works. Generative models focus on the joint probability p(XY ), and the conditional

probability p(Y |X) can be obtained according to Bayes’ rule,

p(Y |X) =
p(XY )

p(X)
=
p(X|Y )p(Y )

p(X)
. (2.1)

Here p(Y |X) and p(Y ) are the posterior and prior distributions of Y respectively,

and p(X|Y ) is called the likelihood function. p(X) is the normalization term.

The likelihood function p(X|Y ) is described as a generative proceess by which the

observed data X is generated given Y . Consequently, a generative model can only

learn from the observed data that it is required to generate. This principle guides us

the development of the models described in Chapter 3 and Chapter 4.

Given the observed data X, the maximum a posteriori (MAP) estimate is the

mode of the posterior distribution, i.e., the value of Y that maximizes the posterior

distribution p(Y |X),

ŷMAP = argmax
Y

p(Y |X) . (2.2)

The maximum likelihood estimate (MLE) is the mode of the likelihood function,

ŷMLE = argmax
Y

p(X|Y ) . (2.3)

According to (2.1), ŷMAP = ŷMLE holds when p(Y ) is a uniform prior.

Some well-known examples of generative models include the Gaussian mixture

models, hidden Markov models, Naive Bayes classifiers, latent Dirichlet allocation

and so on. The stochastic block models are well-known generative models for com-

8



Chapter 2. Background

munity detection. In stochastic block models, the observed data X is the network,

and Y represents the community memberships of the nodes we want to infer.

2.2.2 Bernoulli stochastic block model

This is the most basic version of the stochastic block model. Let’s consider an

undirected network, which is denoted as a simple graph G, including N nodes and

M links. We want to infer a N -dimensional vector g = {g1, g2 . . . , gN}, in which

gu ∈ {1, . . . , K} gives the block membership of node u. The number of topics, which

is denoted by K, is assumed to be known. The model has a K×K symmetric matrix

p, in which prs denotes the connection probability between block r and block s. Then

the posteriori distribution of the block memberships g is the following,

P (g|G, p) = P (G|g, p)P (g)
P (G)

∝ P (G|g, p)P (g) . (2.4)

Given the p parameters, the Bernoulli stochastic block model gives the following

likelihood function,

P (G|g, p) =
∏

(u,v)∈E

pgugv ×
∏

(u,v)/∈E

(1− pgugv)

=
∏
u<v

(pgugv)
Auv(1− pgugv)

1−Auv . (2.5)

The model assumes that each edge is generated independently conditioned on the

block memberships. Each entry Auv of the adjacency matrix is then Bernoulli-

distributed, where the probability that Auv = 1 depends solely on the block mem-

berships gu, gv of its endpoints.

2.2.3 Poisson stochastic block model

In the original stochastic block model, the entries Auv of the adjacency matrix are

independent and Bernoulli-distributed, with P (Auv = 1) = pgu,gv . Here gu is the

9



Chapter 2. Background

block to which u belongs, where p is a K × K matrix. Karrer and Newman [33]

consider randommultigraphs where theAuv are independent and Poisson-distributed,

namely, Auv ∼ Poi(ωgu,gv), and ω replaces p as the mixing matrix.

Thus, ignoring self-loops, the likelihood function for generating an undirected

graph G given the group assignment g and the mixing matrix ω is the following:

P (G | g, ω) =
∏
u<v

(ωgugv)
Auv

Auv!
exp(−ωgugv) . (2.6)

Ignoring the constant
∑

u<v logAuv!, the log-likelihood is

logP (G | g, ω) =
∑
u<v

(Auv logωgugv − ωgugv) . (2.7)

For each pair of blocks r, s, the maximum likelihood estimate (MLE) for ωrs is

ω̂rs =
mrs

nrns
. (2.8)

Here mrs is the number of edges between group r and s if r ̸= s, and twice the

number of edges within group r when r = s. The number of nodes in group r is

denoted as nr.

Substituting the ω in (2.7) with the maximum likelihood estimates (MLEs) gives

the profile log-likelihood [10]

logP (G | g) =1

2

∑
rs

mrs log
mrs

nrns
. (2.9)

The factor 1
2
can be ignored for maximizing the value of the likelihood function. That

is exactly what we saw in [33]. For future reference, we call this model the Stochastic

Block Model (sbm).

2.2.4 Degree-corrected block model for undirected graphs

In the stochastic block model defined in the previous section, every pair of vertices in

a given pair of blocks are connected with the same probability. Thus, for large n the

10



Chapter 2. Background

degree distribution within each block is Poisson. As a consequence, vertices with very

different degrees are unlikely to be in the same block. This leads to problems with

modeling real networks, which often have heavy-tailed degree distributions within

each community. For instance, both liberal and conservative political blogs range

from high-degree “leaders” to low-degree “followers” [1].

To avoid this effect, and allow degree inhomogeneity within blocks, there is a

long history of generative models where the probability of an edge depends on vertex

attributes as well as their block memberships. A particularly elegant variant is the

degree-corrected block model (dc) developed by Karrer and Newman [33].

The dc model generates random multigraphs where the Auv are independent and

Poisson-distributed,

Auv ∼ Poi(SuSvωgu,gv) , (2.10)

here Su is an overall propensity for u to connect to other vertices. Note that since the

Auv are independent, the degrees du will vary somewhat around their expectation-

s; however, the resulting model is much simpler to analyze than one that controls

the degree of each vertex exactly. The dc model prefers high entropy of the de-

grees within community, thus encourages hetorogeneous degree distributions in each

community.

To remove the obvious symmetry where we multiply the S parameters by a con-

stant C and divide ω by C2, a normalization constraint
∑

u:gu=r
Su = κr is imposed

for each block r, where κr =
∑

u:gu=r
du is the total degree of the vertices in block r.

Under these constraints, the MLEs for the S and ω parameters are then

Ŝu = du, ω̂rs =
mrs

κrκs
, (2.11)

where mrs is the same notation in (2.8). Substituting these MLEs for S and ω then

11
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gives the profile log-likelihood

logP (G | g) = 1

2

K∑
r,s=1

mrs log
mrs

κrκs
. (2.12)

Here κr is the total number of degrees in group r.

2.2.5 Mixed-membership block model

Mixed-membership block models are designed for networks in which the communities

are overlapped, i.e., some nodes may belong to more than one community. This is

very common in real-world networks. In social networks, people are associated with

different groups with multiple roles at the same time; in document citation networks,

or online web pages, documents may involve multiple topics. A well known mixed-

membership block model is the Mixed Membership Stochastic Blockmodel (mmsb),

which is presented in [2]. Like the Bernoulli stochastic block model, mmsb also as-

sumes Bernoulli distributions for each link. Another mixed-membership block model,

which is proposed in [33], used Poisson distributions for the number of links between

each pair of nodes. We call this Poisson model the Ball-Karrer-Newman (bkn) mod-

el, and we used this model in our Poisson Mixed-Topic Link Model (pmtlm), which

is described in Chapter 4.

In block models without overlapping communities, each node u belongs to only

one block, which is denoted as gu ∈ {1, . . . , K}. In mixed-membership block models,

each node u is associated with a K-dimensional mixed membership vector θu. For

any block z ∈ {1, . . . , K}, θuz quantifies the extent to which node u belongs to block

z.

In mmsb, these θ parameters are hidden variables drawn from a Dirichlet prior.

The posterior distribution of θ is calculated approximately using the variational

approach, which is quite expensive. In bkn, the θ parameters are estimated to
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Chapter 2. Background

maximize the likelihood using a highly efficient EM algorithm. More discussion

about the difference of these two models is presented in Chapter 4.

2.3 Topic modeling

Let’s consider networks in which each node has rich attributes. This kind of data

is very common in the real world. Like in document citation networks or online

web pages, besides the pairwise relationship, which are the citation relationships

or hyperlinks, each document contains a bunch of words. In these networks, each

document is a node, and the communities are the topics. The node attributes, i.e.,

the document content, provides valuable information for determining the document

topics. Thus, a model which uses both the content (first order) and link (second

order) information to detect document topics is appealing. Stochastic block model-

ing, which is described in the previous section, provides a powerful tool to detect the

community structures by using the network topology, i.e., the link information. On

the other hand, content-based topic models [30, 11], which are well studied in topic

modeling research, give a formal way to use the content informaiton.

Normally topic models assume that each document belongs to multiple topics,

which is the same assumption made in mixed membership block models. We will

see in Chapter 4 that the mixed-membership block model and the probabilistic topic

models are naturally compatable with each other, giving us a nice model to analyse

both content- and link-information efficiently.

In models such as Probabilistic Latent Semantic Analysis (plsa) [30] and Latent

Dirichlet Allocation (lda) [11], each document d has a K-dimensional mixture θd of

topics. Each topic z corresponds in turn to a probability distribution over words,

which is denoted as βz, and each word in d is generated independently from the

resulting mixture of distributions.
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Consider a network of N documents. Each document d has a fixed length Ld,

and consists of a string of words wdℓ for 1 ≤ ℓ ≤ Ld, where 1 ≤ wdℓ ≤ W where

W is the number of distinct words. In the plsa model [30], the generative process

for the content is described as follows. For each document 1 ≤ d ≤ N and each

1 ≤ ℓ ≤ Ld, we independently choose a topic z = zdℓ ∼ Multi(θd), and choose the

word wdℓ ∼ Multi(βz). Thus the total probability that wdℓ is a given word w is

Pr[wdℓ = w] =
K∑
z=1

θdzβzw . (2.13)

Like in those stochastic block models, here we also assume that the number of topics

K is fixed. The distributions βz and θd are parameters to be inferred.

In lda [11], the topic mixtures θ are hidden variables and further drawn from a

Dirichlet prior. In some variants, a Dirichlet prior is imposed on β variables as well.
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Degree-correction and

degree-generation

The work described in this chapter are published in [61] under the supervision of

Prof. Cristopher Moore. I collaborated with Xiaoran Yan. Xiaoran helped with the

Bayesian estimation for degree-generation models, which is described in Appendix C.

Degree-corrected stochastic block models are powerful tools for dealing with net-

works with inhomogeneous degree distributions. However, since degree-corrected

models are given the vertex degrees as parameters and are under no obligation to

explain them, they cannot use degrees to help them classify vertices. As described

in Section 2.2.1, a generative model can only learn from the data that it is required to

generate. For this reason, the dc model may actually fail to recognize communities

that differ significantly in their degree distributions. Thus we have two extremes:

the sbm separates vertices by degree even when it shouldn’t, and the dc model fails

to do so even when it should. Here the sbm and the dc models [33] are the previous

work described in Section 2.2.3 and Section 2.2.4.
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We have a similar problem for directed graphs. The natural generalization of the

dc model, the directed degree-corrected (ddc) block model, which is described in the

following section, has two parameters for each vertex: the expected in-degree and

out-degree. But this model cannot even take advantage of edge orientations. For

instance, in English adjectives usually precede nouns but rarely vice versa. Thus the

ratio of each vertex’s in- and out-degree is strongly indicative of its block membership

if part of speech is what the blocks represent. But the ddc model takes these degrees

as parameters, so it is unable to use this part of the data to classify words according

to their parts of speech.

In the following section, we propose a new degree-corrected block model, which

combines the strengths of the degree-corrected and uncorrected block models. The

oriented degree-corrected (odc) block model is able to utilize the edge orientations

for community detection by only correcting the total degrees. We show that for net-

works with strongly asymmetric behavior between communities, including synthetic

networks and some real-world networks, odc achieves a higher accuracy than sbm

or ddc.

We also propose the degree-generated (dg) block model, which treats the ex-

pected degree of each vertex as generated from a prior distribution in each block,

such as a power law whose exponent varies from one community to another. By

including the probability of these degrees in the likelihood of a given block assign-

ment, the dg model captures the interaction between the degree distribution and

the community structure. In particular, it automatically strikes a balance between

allowing vertices of different degrees to coexist in the same community on the one

hand, and using vertex degrees to separate vertices into communities on the other.

Our experiments show that dg works especially well in networks where communities

have highly inhomogeneous degree distributions, but where the degree distributions

differ significantly between communities. In some cases, dg has a further advantage

16



Chapter 3. Degree-correction and degree-generation

in faster convergence as it reshapes the parameter space, providing the algorithm a

shortcut to the correct community structure.

These new variants of the block model give us the best of both worlds. They

can tolerate heavy-tailed degree distributions within communities, but can also use

degrees and edge orientations to help classify the vertices. In addition to their perfor-

mance on real and synthetic networks, our models illustrate a valuable point about

generative models and statistical inference: when inferring the structure of a network,

you can only use the information that you try to generate.

We test our models on three word adjacency networks in Section 3.3. Our goal

is not to do part-of-speech tagging. There’s a huge literature on that, and we don’t

come close to the state of the art. Our motivation in looking at word networks

is simply to find a class of networks with directed and disassortative structure, in

order to understand the strengths and weaknesses of the various versions of the block

model.

3.1 Directed and oriented degree-corrected

block models

Throughout, we useN andM to denote the number of vertices and edges respectively,

and K to denote the number of blocks. The problem of determining K is a crucial

model selection problem. In some cases, we can use prior domain knowledge, such

as the number of different parts of speech, or the number of different factions into

which a network split over time. In the absence of such knowledge, a variety of

methods have been proposed; in particular, we could compute the likelihood of our

various models with different values of K, and apply a suitable penalty term as in

the AIC [3] or BIC [49] to discourage overfitting. We leave this to our future work
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and assume that K is given here.

The natural extension of dc to directed networks, which we call the directed

degree-corrected (ddc) block model, has two parameters Sout
u , Sin

u for each vertex.

The number of directed edges from u to v is again Poisson-distributed,

Auv ∼ Poi(Sout
u Sin

v ωgu,gv) . (3.1)

We impose the constraints∑
u:gu=r

Sout
u = κoutr ,

∑
u:gu=r

Sin
u = κinr (3.2)

for each block r, where κoutr =
∑

u:gu=r
doutu and κinr =

∑
u:gu=r

dinu denote the total

out- and in-degree of block r. As before, let mrs denote the number of directed edges

from block r to block s. Then the likelihood is

P (G |S, ω, g) =
∏
uv

(
Sout
u Sin

v ωgugv
)Auv

Auv!
exp(−Sout

u Sin
v ωgugv)

=

∏
u(S

out
u )d

out
u (Sin

u )
dinu
∏

rs ω
mrs
rs exp(−κoutr κins ωrs)∏

uv Auv!
, (3.3)

Ignoring the constant
∑

uv logAuv!, the log-likelihood is

logP (G |S, ω, g) =
∑
u

(doutu logSout
u + dinu logSin

u )

+
∑
rs

(mrs logωrs − κoutr κins ωrs) . (3.4)

The MLEs for the parameters (see Appendix A) are

Ŝout
u = doutu , Ŝin

u = dinu , ω̂rs =
mrs

κoutr κins
. (3.5)

Ignoring constants again and substituting these MLEs give

logP (G | g) =
K∑

r,s=1

mrs log
mrs

κoutr κins
. (3.6)
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In the ddc model, the expected in- and out-degrees of each vertex are completely

specified by the S parameters. Thus ddc allows vertices with arbitrary degrees to

fit comfortably together in the same block. On the other hand, since the degrees are

given as parameters, rather than as data that the model must generate and explain,

ddc cannot use them to infer vertex labels. Indeed, it cannot even take advantage

of the orientations of the edges, as shown below by its poor performance on networks

with strongly asymmetric community structure.

To deal with this, we present a partially degree-corrected block model capable

of taking advantage of edge orientations, which we call the oriented degree-corrected

(odc) block model. Following the maxim that we can only use the information that

we try to generate, we correct only for the total degrees of the vertices, and generate

the edges’ orientations.

Let Ḡ denote the undirected version of a directed graph G, i.e., the multigraph

resulting from erasing the arrows for each edge. Its adjacency matrix is Āuv =

Auv +Avu, so (for instance) Ḡ has two edges between u and v if G had one pointing

in each direction. The odc model can be thought of as generating Ḡ according to

the undirected degree-corrected model, and then choosing the orientation of each

edge according to another matrix ρrs, where an edge (u, v) is oriented from u to v

with probability ρgu,gv . Thus the total log-likelihood is

logP (G |S, ω, ρ, g) = logP (Ḡ |S, ω, g) + logP (G | Ḡ, ρ, g) . (3.7)

Writing m̄rs = mrs+msr and κr = κinr +κ
out
r , we can set Su and ωrs for the undirected

model to their MLEs as in equation 2.11, giving

logP (Ḡ | g) = 1

2

K∑
r,s=1

m̄rs log
m̄rs

κrκs
. (3.8)

The orientation term is

logP (G | Ḡ, ρ, g) =
K∑

r,s=1

mrs log ρrs . (3.9)

19



Chapter 3. Degree-correction and degree-generation

For each r, s we have ρrs + ρsr = 1, and the MLEs for ρ are

ρ̂rs = mrs/m̄rs . (3.10)

Note that ρ̂rr = 1/2 for any r. Substituting the MLEs for ρ and combining (3.8)

with (3.9) gives the log-likelihood for the odc model as follows

logP (G | g) =
K∑

r,s=1

mrs log
mrs

κrκs
. (3.11)

In order to understand odc better, we analyze the edge orientation term (3.9) more

carefully. Substituting the MLEs for ρ in (3.9) gives

logP (G|Ḡ, g) = 1

2

∑
rs

(mrs log ρ̂rs +msr log ρ̂sr)

=
1

2

∑
r ̸=s

m̄rs (ρ̂rs log ρ̂rs + ρ̂sr log ρ̂sr) +
∑
r

mrr log ρ̂rr

= −
∑
r<s

m̄rsτ(ρ̂rs)− (log 2)
∑
r

mrr . (3.12)

Here τ(x) = −x log(x)− (1−x) log(1−x) is the entropy function. The total number

of inter-block edges is
∑

r<s m̄rs, and the total number of intra-block edges is
∑

rmrr.

Examining (3.12), we see that the edge orientation term prefers highly directed

inter-block connections, i.e., such that ρ̂rs are near 0 or 1, so that τ(ρ̂rs) is minimized.

However, as τ(ρ̂rs) ≤ log 2, it also prefers disassortative structures, in which the

number of intra-block edges mrr is as small as possible; it has no basis on which to

orient these edges, so they contribute a negative term to the log-likelihood.

Thus, while odc can detect assortative structures due to the undirected term

(3.8), and may do better than dc or ddc if the connections between blocks are

highly directed (for instance, if there are three blocks, and all inter-block connec-

tions are oriented from the “lower” block to the “higher” one), it performs best in

disassortative networks with highly-directed connections between blocks, so that the
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orientation of most edges is determined by the block assignment of their endpoints.

We will see an example of this in a real-world network in Section 3.3.2.

We note that we could reduce odc’s preference for disassortative structure by

simply ignoring the second term in (3.12). This would correspond to a generative

model where inter-block edges are directed, but intra-block edges are undirected. We

have not pursued this.

We can also view odc as a special case of ddc, where we add the constraint

Sin
u = Sout

u for all vertices u (see Appendix B). Moreover, if we set Su = 1 for all u,

we obtain the original block model, or rather its Poisson multigraph version where

each Auv is Poisson-distributed with mean ωgu,gv . Thus SBM ≤ ODC ≤ DDC ,

where A ≤ B means that model A is a special case of model B, or that B is an

elaboration of A (see Figure 3.1). We will see later that since it is forced to explain

edge orientations, odc performs better on some networks than either sbm or ddc.

SBM

 DC

SBM

 DDC

ODC

M
o
d
e
l e

la
b
o
ra

t io
n

Undirected Directed

Figure 3.1: Relationship of the models.
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3.2 Degree-generated block models

Another way to utilize vertex degrees for community detection is to require the

model to generate them, according to some prior degree distribution derived from

domain knowledge. For instance, many real-world networks have a power-law degree

distribution, but with parameters (such as the exponent, minimum degree, or leading

constant) that vary from community to community. In that case, the degree of a

vertex gives us a clue as to its block membership. This yields our proposed degree-

generated (DG) block models. They can tolerate heavy-tailed degree distributions

within communities, but can also use degrees and edge orientations to help classify

the vertices.

In a dg model, we first generate the S parameters of one of the degree-corrected

block models discussed above, i.e., the expected vertex degrees, and then use them

to generate a random multigraph. Specifically, each Su is generated independently

according to some distribution whose parameters ψ depend on the block gu to which

u belongs. Thus dg is a hierarchical model, which extends the previous degree-

corrected block models by adding a degree generation stage on top, treating the

Ss as generated by the block assignment g and the parameters ψ rather than as

parameters.

We can apply this approach to the undirected, directed, or oriented versions of the

degree-corrected model; at the risk of drowning the reader in acronyms, we denote

these dg-dc, dg-ddc, and dg-odc. In each case, the total log-likelihood of a graph

G is

logP (G |ψ, ω, g) = log

∫
dS P (G |S, ω, g)P (S |ψ, g) , (3.13)

where

P (S |ψ, g) =
N∏
u=1

P (Su |ψgu) . (3.14)
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For the directed models, we use Su as a shorthand for Sin
u and Sout

u .

As in many hierarchical models, computing this integral appears to be difficult,

except when P (S |ψ) has the form of a conjugate prior such as the Gamma distribu-

tion (see Appendix C). We approximate it with a point estimate by assuming that

it is dominated by the most-likely value of S,

logP (G |ψ, ω, g) ≈ logP (G | Ŝ, ω, g) + logP (Ŝ |ψ, g) . (3.15)

However, even determining Ŝ is challenging when P (S |ψ) is, say, a power law with

a minimum-degree cutoff. Thus we make a further approximation, setting Ŝ just by

maximizing the block model term logP (G | Ŝ, ω, g) as we did before, using (3.5) or

the analogous equations for the dc or odc. In essence, these approximations treat

P (Ŝ |ψ, g) as a penalty term, imposing a prior on the degree distribution of each

community with hyperparameters ψ. This leads to community structures that might

not be as good a fit to the edges, but compensate with a much better fit to the

degrees.

We can either treat the degree-generating parameters ψ as fixed—say, as predicted

by a theoretical model of network growth [4, 9, 41]—or infer them by finding the ψ̂

that maximizes P (Ŝ |ψ). For instance, suppose the Su in block gu = r are distributed

as a continuous power law with a lower cutoff Smin,r. Specifically, let the parameters

in each block r be ψr = (αr, βr, Smin,r), and let

P (Su |ψr) =


βr Su = 0

0 0 < Su < Smin,r

(1−βr)(α−1)
Smin,r

(
Su

Smin,r

)−αr

Su ≥ Smin,r .

(3.16)

In the directed case, we have ψin
r = (αin

r , β
in
r , S

in
min,r) and ψout

r = (αout
r , βout

r , Sout
min,r).

Allowing βout
r to be nonzero, for instance, lets us directly include vertices with no

outgoing neighbors; we find this useful in some networks. Alternately, we can choose
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(Sin
u , S

out
u ) from some joint distribution, allowing in- and out-degrees to be correlated

in various ways.

We fix Smin,r = 1. Given the degrees and the block assignment, let Yr = {u :

gu = r and Su ̸= 0}, and let yr = |Yr|. The MLE for αr is [15]

α̂r = 1 +
yr∑

u∈Yr lnSu
. (3.17)

The MLE for β̂r is simply the fraction of vertices in block r with degree zero.

3.3 Experimental Results

3.3.1 Experiments on synthetic networks

In order to understand under what circumstances our models out-perform previ-

ous variants of the block model, we performed experiments on synthetic networks,

varying the degree distributions in communities, the degree of directedness between

communities, and so on.

First, we generated undirected networks according to the dg-dc model, with two

blocks or communities of equal size n/2. In order to confound the block model as

much as possible, we deliberately designed these networks so that the two blocks

have the same average degree. The degree distribution in block 1 is a power law

with exponent α = 1.7, with an upper bound of 1850, so that the average degree is

20. The degree distribution in block 2 is Poisson, also with mean 20. As described

in Appendix D, the upper bound on the power law is larger than any degree actually

appearing in the network; it just changes the normalizing constant of the power law,

and the MLE for α can still be calculated using (3.17). We assume the algorithm

knows that one block has a power law degree distribution and the other is Poisson,

but we force it to infer the parameters of these distributions.
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As in [33], we use a parameter λ to interpolate linearly between a fully random

network with no community structure and a “planted” one where the communities

are completely separated. Thus

ωrs = λωplanted
rs + (1− λ)ωrandom

rs (3.18)

where

ωrandom
rs =

κrκs
2m

, ωplanted =

 κ1 0

0 κ2

 . (3.19)

We inferred the community structure with various models. We ran the Kernighan-

Lin (KL) heuristic first to find a local optimum [33], and then ran the heat-bath

MCMC algorithm with a fixed number of iterations to further refine it if possible.

We initialized each run with a random block assignment; to test the stability of

the models, we also tried initializing them with the correct block assignment. Since

isolated vertices don’t participate in the community structure, giving us little or

no basis on which we can classify them, we remove them and focus on the giant

component. For λ = 1, where the community structure is purely the “planted” one,

we kept two giant components, one in each community.

We measured accuracy by the normalized mutual information (NMI) [19] between

the most-likely block assignment found by the model and the correct assignment. To

make this more concrete, if there are two blocks of equal size and 95% of the vertices

in each block are labeled correctly, the NMI is 0.714. If 90% in each group are labeled

correctly, the NMI is 0.531. For groups of unequal size, the NMI is a better measure

of accuracy than the fraction of vertices labeled correctly, since one can make this

fraction fairly large simply by assigning every vertex to the larger group.

As shown in Fig. 3.2, dg-dc works very well even for small λ. This is because it

can classify most of the vertices simply based on their degrees; if du is far from 20,

for instance, then u is probably in block 1. As λ increases, it uses the connections
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between communities as well, giving near-perfect accuracy for λ ≥ 0.6. It does

equally well whether its initial assignment is correct or random.
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Figure 3.2: Tests on synthetic networks generated by the dg-dc model. Each point
is based on 30 randomly generated networks with 2400 nodes. For each network
and each model, we choose the best result from 10 independent runs, initialized
either with random assignments (the suffix R) or the true block assignment (the
suffix T ). Each run consisted of the KL heuristic followed by 106 MCMC steps. Our
degree-generated (dg) block model performs much better on these networks than the
degree-corrected (dc) model. The non-degree-corrected (sbm) model doesn’t work
at all.

The dc model, in contrast, is unable to use the vertex degrees, and has accuracy

near zero (i.e., not much better than a random block assignment) for λ ≤ 0.2. Like

the sbm [20, 21], it may have a phase transition at a critical value of λ below which

the community structure is undetectable. Initializing it with the correct assignment

helps somewhat at these values of λ, but even then it settles on an assignment far

from the correct one.

The original stochastic block model (sbm), as discussed above, separates vertices

with high degrees from vertices with low degrees. Thus it cannot find the correct

group structure even for large λ. Our synthetic tests are designed to have a broad

degree distribution in block 1, and thus make sbm fail. Note that if the degree

distribution in block 1 is a power-law with a larger exponent α, then most of the

degrees will be much lower than 20, in which case sbm works reasonably well.
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Next, we generated directed networks according to the dg-ddc model. We again

have two blocks of equal size, with degree distributions similar to the undirected

networks tested above. In block 1, both out- and in-degrees are power-law distributed

with α = 1.7, with an upper bound of 1850 so that the expected degree is 20.

In block 2, both out- and in-degrees are Poisson-distributed with mean 20. To

test our oriented and directed models, we interpolate between a random network

ωrandom
rs = κrκs/4m and a planted network with completely asymmetric connections

between the blocks,

ωplanted =

 (κ1 − ω12)/2 ω12

0 (κ2 − ω12)/2

 , (3.20)

where ω12 ≤ min(κ1, κ2). We choose ω12 =
1
2
min(κ1, κ2).

As Fig. 3.3 shows, dg-odc and dg-ddc have very similar performance at the

extremes where λ = 0 and 1. However, dg-odc works better than dg-ddc for other

values of λ, and both of them achieve much better accuracy than the odc or ddc

models. As in Fig. 3.2, the degree-generated models can achieve a high accuracy

based simply on the vertex degrees, and as λ grows they leverage this information

further to achieve near-perfect accuracy for λ ≥ 0.8.

Among the non-degree-corrected models, odc performs significantly better than

ddc for λ ≥ 0.4. Edges are more likely to point from block 1 to block 2 than vice

versa, and odc can take advantage of this information while ddc cannot. As we will

see in the next section, odc performs well on some real-world networks for precisely

this reason.

3.3.2 Experiments on real networks

We studied three word adjacency networks, where vertices are separated into two

blocks: adjectives and nouns. The first consists of common words in Dickens’ novel
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Figure 3.3: Tests on synthetic directed networks with 2400 nodes. Left, dg-odc
and dg-ddc; right, odc and ddc. The degree-generated models again perform
very well even for small λ, since they can use in- and out-degrees to classify the
vertices. odc performs significantly better than ddc for λ ≥ 0.4, since it can use
the edge orientations to distinguish the two blocks. The number of networks, runs,
and MCMC steps per run are as in Fig. 3.2.

David Copperfield [47]. The other two are built from the Brown corpus, which is

a tagged corpus of present-day edited American English across various categories,

including news, novels, documents, and many others [26]. The smaller one contains

words in the News category (45 archives) that appeared at least 10 times; the larger

one contains all the adjectives and nouns in the giant component of the entire corpus.

We considered both the simple version of these networks where Auv = 1 if u and

v ever occur adjacently in that order, and the multigraph version where Auv ≥ 0 is

the number of adjacent cooccurences. The sizes, block sizes, and number of edges of

these networks are shown in Table 3.1. In “News” and “Brown”, the block sizes are

quite different, with more nouns than adjectives. As discussed above, the NMI is a

better measure of accuracy than the fraction of vertices labeled correctly, since we

could make the latter fairly large by labeling everything a noun.

In each network, both blocks have heavy-tailed in- and out-degree distributions

(Figure 3.4). The connections between them are disassortative and highly asymmet-

ric: since in English adjectives precede nouns more often than they follow them, and

more often than adjectives precede adjectives or nouns precede nouns, ω12 is roughly

10 times larger than ω21, and ω12 is larger than either ω11 or ω22. The ω for each
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Table 3.1: Basic statistics of the three word adjacency networks. S and M denote
the simple and multigraph versions respectively.

Network #words #adjective #noun #edges (S) #edges (M)

David 112 57 55 569 1494
News 376 91 285 1389 2411
Brown 23258 6235 17023 66734 88930

Table 3.2: The matrices ωrs = mrs/(nrns) for the most-likely block assignment
according to the stochastic block model.

David(S) David(M) News(S) News(M) Brown(S) Brown(M)

ω11 0.039 0.080 0.010 0.012 9.1e-05 1.1e-04
ω12 0.118 0.358 0.015 0.028 3.4e-04 4.4e-04
ω21 0.018 0.025 0.002 0.003 2.0e-05 2.4e-05
ω22 0.006 0.011 0.010 0.019 8.8e-05 1.2e-04

network corresponding to the correct block assignment (according to the stochastic

block model) is shown in Table 3.2.

Performance of oriented and degree-corrected models

Table 3.3 compares the performance of non-degree-generated block models, including

sbm, dc, odc, and ddc. (Under dc, we ignore the edge orientations, and treat the

graph as undirected. Note that the resulting network may contain multi-edges even

though the directed one doesn’t.)

In our experiments, we started with a random initial block assignment, ran the

KL heuristic to find a local optimum, and then ran the heat-bath MCMC algorithm.

We also tested a naive heuristic nh which simply labels a vertex v as an adjective if

doutv > dinv , and a noun if dinv > doutv . If doutv = dinv , nh labels v randomly with equal

probabilities.

For “David”, dc and odc work fairly well, and both are better than the naive
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Table 3.3: For each model and each network, we pick the block assignment with
highest likelihood and compute its NMI with the correct block assignment. Each run
consisted of the KL heuristic, starting with a random block assignment, followed by
106 MCMC steps. The results for “David” and “News” are based on 100 independent
runs; for “Brown”, 50 runs are executed. The best NMI for each network is shown
in bold.

David(S) David(M) News(S) News(M) Brown(S) Brown(M)

SBM .423 .051 .006 .018 .001 7e-04
DC .566 .568 .084 .083 .020 .015
ODC .462 .470 .084 .029 .311 .318
DDC .128 8e-04 .084 .091 .016 .012
NH .395 .449 .215 .233 .309 .314

heuristic nh. Moreover, the mistakes they make are instructive. There are three

adjectives with out-degree zero: “full”, “glad”, and “alone”. odc mislabels these

since it expects edges to point away from adjectives, while dc labels them correctly

by using the fact that edges are disassortative, tending to cross from one block to

the other.

The standard sbm works well on “David(S)” but fails on “David(M)” because

the degrees in the multigraph are more skewed than those in the simple one. Finally,

ddc performs the worst; by correcting for in- and out-degrees separately, it loses

any information that the edge orientations could provide, and even fails to notice

the disassortative structure that dc uses. Thus full degree-correction in the directed

case can make things worse, even when the degrees in each community are broadly

distributed.

For “Brown”, all these models fail except odc, although it does only slightly

better than the naive nh. For “News”, all these models fail, even odc. Despite the

degree correction, the most-likely block assignment is highly assortative, with high-

degree vertices connecting to each other. However, we found that in most runs on

“News”, odc used the edge orientations successfully to find the a block assignment
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Table 3.4: Results using the naive nh assignment as the initial condition, again
followed by 106 MCMC steps. This hint now lets odc outperform the other models
on “News”. The best NMI for each network is shown in bold.

David(S) David(M) News(S) News(M) Brown(S) Brown(M)

SBM .423 .051 .006 .021 .001 7e-04
DC .566 .568 .084 .015 .160 .155
ODC .462 .470 .247 .270 .311 .318
DDC .015 .060 .084 .005 .005 .070
NH .395 .449 .215 .233 .309 .314

close to the correct one; it found the assortative structure only occasionally. This

suggests that, even though the “wrong” structure has a higher likelihood, we can do

much better if we know what kind of community structure to look for; in this case,

disassortative and directed.

To test this hypothesis, we tried giving the models a hint about the community

structure by using nh to determine the initial block assignment. We then performed

the KL heuristic and the MCMC algorithm as before. As Table 3.4 shows, this

hint improves odc’s performance on “News” significantly; it is able to take the

initial naive classification, based solely on degrees, and refine it using the network’s

structure. Note that this more accurate assignment actually has lower likelihood

than the one found in Table 3.3 using a random initial condition—so nh helps the

model stay in a more accurate, but less likely, local optimum. Starting with nh

improves dc’s performance on “Brown” somewhat, but dc still ends up with an

assignment less accurate than the naive one.

Performance of degree-generated models

In this section, we measure the performance of degree-generated models on the Brown

network, and compare them to their non-degree-generated counterparts. According

to Figure 3.4, the in- and out-degree distributions in each block have heavy tails
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close to a power-law. Moreover, the out-degrees of the adjectives have a heavier tail

than those of the nouns, and vice versa for the in-degrees. This is exactly the kind of

difference in the degree distributions between communities that our dg block models

are designed to take advantage of.
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Figure 3.4: Degree distributions in the Brown network.

Table 3.5: MLEs for the degree generation parameters in the Brown network, given
the correct assignment.

Brown(S) Brown(M)

block α̂in α̂out β̂in β̂out α̂in α̂out β̂in β̂out

adjective 2.329 2.629 0.161 0.527 2.136 2.326 0.161 0.527
noun 2.721 2.248 0.716 0.021 2.576 2.134 0.716 0.021

Setting Smin = 1, we can estimate the parameters α and β for these distributions

as discussed in Section 3.2. We show the most likely values of these parameters,

given the correct assignment, in Table 3.5.
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Table 3.6: Performance of degree-generated models on the Brown corpus. KL indi-
cates that we applied the KL heuristic after 106 MCMC steps. dg indicates degree
generation. Each number gives the NMI for the most-likely assignment found in 50
independent runs. The best model is dg-odc. Moreover, degree generation helps
odc converge, providing much of the benefit of the KL heuristic while avoiding its
long running time (see bold numbers).

Brown(S) Brown(M)

dc odc ddc dc odc ddc

– – .010 .188 .008 .007 .203 .011
KL – .020 .311 .016 .015 .318 .012
– DG .267 .302 .213 .278 .310 .149
KL DG .271 .312 .225 .284 .320 .195

As Table 3.6 shows, degree generation improves dc and ddc significantly, letting

them find a good assignment as opposed to one with NMI near zero. For odc, the

slight performance improvement makes dg-odc the best model overall. We compare

performance starting with the KL heuristic to performance using MCMC alone. We

see that degree generation gives odc almost as much benefit as the KL heuristic

does. In other words, it speeds up the MCMC optimization process, letting odc

find a good assignment without the initial help of the computationally expensive KL

heuristic.

3.4 Summary

Based on the degree-corrected (dc) block model for undirected networks introduced

in [33], we developed two block models with degree-correction for directed network-

s, which are the directed degree-corrected (ddc) and the oriented degree-corrected

(odc) block models. When applying these models on directed networks, dc totally

ignores the direction of the edges and generates the undirected version of the given

network. dc prefers community structures where the degrees of the nodes are highly
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skewed in each community. ddc generates the directed network completely, thus

both the in- and out-degrees are corrected. In other words, ddc prefers community

structures where in each community both the in- and out-degrees of the nodes are

highly skewed. Thus ddc is unable to use the edge orientation informaiton when

the community structure presents disassortative mixing and the inter-community

connections are highly directed. odc works perfectly in such a case by generating

the undirected network first using the dc model and then generating the edge ori-

entations. odc prefers disassortative mixing and highly directed inter-community

connections.

Non-degree-corrected and degree-corrected block models represent two extremes:

one prefers homogeneous degree distributions in each community and the other

prefers inhomogeneous degree distributions. Degree generation (dg) fills the gap

between them. dg generates expected degrees of the nodes first and then generates

the edges using degree-corrected block models, which can be dc, ddc or odc. dg

works jointly with degree-corrected block models so that the joint model is able to

use the prior knowledge of the degree distributions in each community, which can be

homogeneous, inhomogeneous or any specified distributions.

The lesson we learned here about generative models and statistical inference is

that when inferring the structure of a network, you can only use the information

that you try to generate. odc generates the edge orientations so that the model can

use this information for community detection; dg generates the degree distributions,

thus it’s able to use the information of the degree distributions. In the next chapter,

we will see how we can use node attributes to help us infer the communities. Guided

by the same philosophy, we developed models which are able to use information

beyond the network topology by simply generating rich attributes of the nodes.
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Scalable text and link analysis

The work described in this chapter is published in [60] under the supervision of Prof.

Cristopher Moore. I also collaborated with Xiaoran Yan and Lise Getoor. Xiao-

ran helped with the writing. Lise provided some useful tools for data processing.

Lise’s expertise on machine learning and topic modeling helped the development of

the paper. I collaborated with Sergi Valverde on the project of the patent citation

networks. Sergi is an expert on the evolution of technology, and he provided us the

patent network data.

Many modern data sets contain both rich information about each object, and

pairwise relationships between them, forming networks where each object is a node

and links represent the relationships. In document networks, for example, each node

is a document containing a sequence of words, and the links between nodes are

citations or hyperlinks. Both the content of the documents and the topology of the

links between them are meaningful.

Over the past few years, two disparate communities have been approaching these

data sets from different points of view. In the data mining community, the goal has
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been to augment traditional approaches to learning and data mining by including

relations between objects [27, 37, 57]: for instance, using the links between documents

to help us label them by topic. In the network community, including its subset in

statistical physics, the goal has been to augment traditional community structure

algorithms such as the stochastic block model [23, 31, 51] by taking node attributes

into account, for instance, to use the content of documents, rather than just the

topological links between them, to help us understand their community structure.

In the original stochastic block model, each node has a discrete label, assigning

it to one of k communities. These labels, and the k × k matrix of probabilities with

which a given pair of nodes with a given pair of labels have a link between them, can

be inferred using Monte Carlo algorithms (e.g. [42]) or, more efficiently, with belief

propagation [21, 20] or pseudolikelihood approaches [14]. However, in real networks

communities often overlap, and a given node can belong to multiple communities.

This led to the mixed-membership block model [2], where the goal is to infer, for each

node v, a distribution or mixture of labels θv describing to what extent it belongs to

each community. If we assume that links are assortative, i.e., that nodes are more

likely to link to others in the same community, then the probability of a link between

two nodes v and v′ depends on some measure of similarity (say, the inner product)

of θv and θv′ .

These mixed-membership block models fit nicely with classic ideas in topic mod-

eling. In models such as Probabilistic Latent Semantic Analysis (plsa) [30] and

Latent Dirichlet Allocation (lda) [11], each document d has a mixture θd of topics.

Each topic corresponds in turn to a probability distribution over words, and each

word in d is generated independently from the resulting mixture of distributions. If

we think of θd as both the mixture of topics for generating words and the mixture of

communities for generating links, then we can infer {θd} jointly from the documents’

content and the presence or absence of links between them.
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There are many possible such models, and we are far from the first to think

along these lines. Our innovation is to take as our starting point a particular mixed-

membership block model recently developed in the physics community [7], which we

call the bkn model. It differs from the mixed-membership stochastic block model

(mmsb) of [2] in several ways:

1. The bkn model treats the community membership mixtures θd directly as

parameters to be inferred. In contrast, mmsb treats θd as hidden variables

generated by a Dirichlet distribution, and infers the hyperparameters of that

distribution. The situation between plsa and lda is similar; plsa infers the

topic mixtures θd, while lda generates them from a Dirichlet distribution.

2. The mmsb model generates each link according to a Bernoulli distribution,

with an extra parameter for sparsity. Instead, bkn treats the links as a ran-

dom multigraph, where the number of links Add′ between each pair of nodes

is Poisson-distributed. As a result, the derivatives of the log-likelihood with

respect to θd and the other parameters are particularly simple.

These two factors make it possible to fit the bkn model using an efficient and exact

expectation-maximization (EM) algorithm, making its inference highly scalable. The

bkn model has another advantage as well:

3. The bkn model is degree-corrected, in that it takes the observed degrees of the

nodes into account when computing the expected number of edges between

them. Thus it recognizes that two documents that have very different degrees

might in fact have the same mix of topics; one may simply be more popular

than the other.

In our work, we use a slight variant of the bkn model to generate the links, and

we use plsa to generate the text. We present an EM algorithm for inferring the
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topic mixtures and other parameters. (While we do not impose a Dirichlet prior on

the topic mixtures, it is easy to add a corresponding term to the update equations.)

Our algorithm is scalable in the sense that each iteration takes O(K(N +M + R))

time for networks with K topics, N documents, and M links, where R is the sum

over documents of the number of distinct words appearing in each one. In practice,

our EM algorithm converges within a small number of iterations, making the total

running time linear in the size of the corpus.

Our model can be used for a variety of learning and generalization tasks, including

document classification or link prediction. For document classification, we can obtain

hard labels for each document by taking its most-likely topic with respect to θd, and

optionally improve these labels further with local search. For link prediction, we

train the model using a subset of the links, and then ask it to rank the remaining

pairs of documents according to the probability of a link between them. For each

task we determine the optimal relative weight of the content vs. the link information.

We performed experiments on three real-world data sets, with thousands of doc-

uments and millions of words. The experimental results illustrated in Section 4.3

show that our algorithm is more accurate, and considerably faster, than previous

techniques for both document classification and link prediction.

The rest of the chapter is organized as follows. Section 4.1 describes our generative

model, and compares it with related models in the literature. Section 4.2 gives our

EM algorithm and analyzes its running time.

4.1 Our model and previous work

In this section, we give our proposed model, which we call the Poisson mixed-topic

link model (pmtlm) and its degree-corrected variant pmtlm-dc.
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4.1.1 The generative model

Consider a network of N documents. Each document d has a fixed length Ld, and

consists of a string of words wdℓ for 1 ≤ ℓ ≤ Ld, where 1 ≤ wdℓ ≤ W where W is the

number of distinct words. In addition, each pair of documents d, d′ has an integer

number of links connecting them, giving an adjacency matrix Add′ . There are K

topics, which play the dual role of the overlapping communities in the network.

Our model generates both the content {wdℓ} and the links {Add′} as follows.

We generate the content using the plsa model [30]. Each topic z is associated

with a probability distribution βz over words, and each document has a probability

distribution θd over topics. For each document 1 ≤ d ≤ N and each 1 ≤ ℓ ≤ Ld,

we independently choose a topic z = zdℓ ∼ Multi(θd), and choose the word wdℓ ∼

Multi(βz). Thus the total probability that wdℓ is a given word w is

Pr[wdℓ = w] =
K∑
z=1

θdzβzw . (4.1)

We assume that the number of topics K is fixed. The distributions βz and θd are

parameters to be inferred.

We generate the links using a version of the Ball-Karrer-Newman (bkn) model

[7]. Each topic z is associated with a link density ηz. For each pair of documents

d, d′ and each topic z, we independently generate a number of links which is Poisson-

distributed with mean θdzθd′zηz. Since the sum of independent Poisson variables is

Poisson, the total number of links between d and d′ is distributed as

Add′ ∼ Poi

(∑
z

θdzθd′zηz

)
. (4.2)

Since Add′ can exceed 1, this gives a random multigraph. In the data sets we study

below, Add′ is 1 or 0 depending on whether d cites d′, giving a simple graph. On

the other hand, in the sparse case the event that Add′ > 1 has low probability in
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our model. Moreover, the fact that Add′ is Poisson-distributed rather than Bernoulli

makes the derivatives of the likelihood with respect to the parameters θdz and ηz

very simple, allowing us to write down an efficient EM algorithm for inferring them.

This version of the model assumes that links are assortative, i.e., that links be-

tween documents only form to the extent that they belong to the same topic. One

can easily generalize the model to include disassortative links as well, replacing ηz

with a matrix ηzz′ that allows documents with distinct topics z, z′ to link [7].

We also consider degree-corrected versions of this model, where in addition to its

topic mixture θd, each document has a propensity Sd of forming links. In that case,

Add′ ∼ Poi

(
SdSd′

∑
z

θdzθd′zηz

)
. (4.3)

We call this variant the Poisson Mixed-Topic Link Model with Degree Correction

(pmtlm-dc).

4.1.2 Prior work on content–link models

Most models for document networks generate content using either plsa [30], as

we do, or lda [11]. The distinction is that plsa treats the document mixtures θd

as parameters, while in lda they are hidden variables, integrated over a Dirichlet

distribution. As we show in Section 4.2, our approach gives a simple, exact EM

algorithm, avoiding the need for sampling or variational methods. While we do not

impose a Dirichlet prior on θd in this paper, it is easy to add a corresponding term

to the update equations for the EM algorithm, with no loss of efficiency.

There are a variety of methods in the literature to generate links between docu-

ments. phits-plsa [18], link-lda [22] and link-plsa-lda [44] use the phits [17]

model for link generation. phits treats each document as an additional term in the

vocabulary, so two documents are similar if they link to the same documents. This is
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Figure 4.1: Graphical models for link generation.

analogous to a mixture model for networks studied in [48]. In contrast, block models

like ours treat documents as similar if they link to similar documents, as opposed to

literally the same ones.

The pairwise link-lda model [44], like ours, generates the links with a mixed-

topic block model, although as in mmsb [2] and lda [11] it treats the θd as hidden

variables integrated over a Dirichlet prior. They fit their model with a variational

method that requires N2 parameters, making it less scalable than our approach.

In the c-pldc model [56], the link probability from d to d′ is determined by their
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topic mixtures θd, θd′ and the popularity td′ of d
′, which is drawn from a Gamma

distribution with hyperparameters a and b. Thus td′ plays a role similar to the

degree-correcting parameter Sd′ in our model, although we correct for the degree of

d as well. However, c-pldc does not generate the content, but takes it as given.

The Relational Topic Model (rtm) [12, 13] assumes that the link probability

between d and d′ depends on the topics of the words appearing in their text. In con-

trast, our model uses the underlying topic mixtures θd to generate both the content

and the links. Like our model, rtm defines the similarity of two topics as a weighted

inner product of their topic mixtures: however, in rtm the probability of a link is a

nonlinear function of this similarity, which can be logistic, exponential or normal, of

this similarity.

Although it deals with a slightly different kind of dataset, our model is closest in

spirit to the Latent Topic Hypertext Model (lthm) [29]. This is a generative model

for hypertext networks, where each link from d to d′ is associated with a specific

word w in d. If we sum over all words in d, the total number of links Add′ from d to

d′ that lthm would generate follows a binomial distribution

Add′ ∼ Bin

(
Ld, λd′

∑
z

θdzθd′z

)
, (4.4)

where λd′ is, in our terms, a degree-correction parameter. When Ld is large this

becomes a Poisson distribution with mean Ldλd′
∑

z θdzθd′z. Our model differs from

this in two ways: our parameters ηz give a link density associated with each topic

z, and our degree correction Sd does not assume that the number of links from d is

proportional to its length.

We briefly mention several other approaches. The authors of [27] extend the

probabilistic relational model (prm) framework and proposed a unified generative

model for both content and links in a relational structure. In [38], the authors

proposed a link-based model that describes both node attributes and links. The
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htm model [52] treats links as fixed rather than generating them, and only generates

the text. Finally, the lmmg model [34] treats the appearance or absence of a word

as a binary attribute of each document, and uses a logistic or exponential function

of these attributes to determine the link probabilities.

In Section 4.3 below, we compare our model to phits-plsa, link-lda, c-pldc,

and rtm. Graphical models for the link generation components of these models, and

ours, are shown in Figure 4.1.

4.2 A scalable EM algorithm

Here we describe an efficient Expectation-Maximization algorithm to find the MLEs

of the parameters in our model. Each update takes O(K(N +M + R)) time for a

document network with K topics, N documents, and M links, where R is the sum

over the documents of the number of distinct words in each one. Thus the running

time per iteration is linear in the size of the corpus.

For simplicity we describe the algorithm for the simpler version of our model,

pmtlm. The algorithm for the degree-corrected version, pmtlm-dc, is similar (see

Appendix F).

4.2.1 The likelihood

Let Cdw denote the number of times a word w appears in document d. From (4.1),

the log-likelihood of d’s content is
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Lcontent
d = logP (wd1, . . . , wdLd

| θd, β)

=
W∑
w=1

Cdw log

(
K∑
z=1

θdzβzw

)
. (4.5)

Similarly, from (4.2), the log-likelihood for the links Add′ is

Llinks = logP (A | θ, η)

=
1

2

∑
dd′

Add′ log

(∑
z

θdzθd′zηz

)
− 1

2

∑
dd′

∑
z

θdzθd′zηz . (4.6)

We ignore the constant term −
∑

dd′ logAdd′ ! from the denominator of the Poisson

distribution, since it has no bearing on the parameters.

4.2.2 Balancing content and links

While we can use the total likelihood
∑

d Lcontent
d + Llinks directly, in practice we

can improve our performance significantly by better balancing the information in

the content vs. that in the links. In particular, the log-likelihood Lcontent
d of each

document is proportional to its length, while its contribution to Llinks is proportional

to its degree. Since a typical document has many more words than links, Lcontent

tends to be much larger than Llinks.

Following [30], we can provide this balance in two ways. One is to normalize

Lcontent by the length Ld, and another is to add a parameter α that reweights the

relative contributions of the two terms Lcontent and Llinks. We then maximize

L = α
∑
d

1

Ld
Lcontent
d + (1− α)Llinks . (4.7)

Varying α from 0 to 1 lets us interpolate between two extremes: studying the docu-

ment network purely in terms of its topology, or purely in terms of the documents’
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content. Indeed, we will see in Section 4.3 that the optimal value of α depends on

which task we are performing: closer to 0 for link prediction, and closer to 1 for topic

classification.

4.2.3 Update equations and running time

We maximize L as a function of {θ, β, η} using an EM algorithm, very similar to

the one introduced by [7] for overlapping community detection. We start with a

standard trick to change the log of a sum into a sum of logs, writing

Lcontent
d ≥

W∑
w=1

Cdw

K∑
z=1

hdw(z) log
θdzβzw
hdw(z)

Llinks ≥ 1

2

∑
dd′

K∑
z=1

Add′qdd′(z) log
θdzθd′zηz
qdd′(z)

− 1

2

∑
dd′

K∑
z=1

θdzθd′zηz . (4.8)

Here hdw(z) is the probability that a given appearance of w in d is due to topic z,

and qdd′(z) is the probability that a given link from d and d′ is due to topic z. This

lower bound holds with equality when

hdw(z) =
θdzβzw∑
z′ θdz′βz′w

, qdd′(z) =
θdzθd′zηz∑
z′ θdz′θd′z′ηz′

, (4.9)

giving us the E step of the algorithm.

For the M step, we derive update equations for the parameters {θ, β, η}. By

taking derivatives of the log-likelihood (4.7) (see the online version for details) we

obtain

ηz =

∑
dd′ Add′qdd′(z)

(
∑

d θdz)
2 (4.10)

βzw =

∑
d(1/Ld)Cdwhdw(z)∑

d(1/Ld)
∑

w′ Cdw′hdw′(z)
(4.11)

θdz =
(α/Ld)

∑
w Cdwhdw(z) + (1− α)

∑
d′ Add′qdd′(z)

α + (1− α)κd
. (4.12)
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Here κd =
∑

d′ Add′ is the degree of document d.

To analyze the running time, let Rd denote the number of distinct words in

document d, and let R =
∑

dRd. Then only KR of the parameters hdw(z) are

nonzero. Similarly, qdd′(z) only appears if Add′ ̸= 0, so in a network with M links

only KM of the qdd′(z) are nonzero. The total number of nonzero terms appearing

in (4.9)–(4.12), and hence the running time of the E and M steps, is thus O(K(N +

M +R)).

As in [7], we can speed up the algorithm if θ is sparse, i.e. if many documents

belong to fewer than K topics, so that many of the θdz are zero. According to (4.9),

if θdz = 0 then hdℓ(z) = qdd′(z) = 0, in which case (4.12) implies that θdz = 0 for all

future iterations. If we choose a threshold below which θdz is effectively zero, then

as θ becomes sparser we can maintain just those hdℓ(z) and qdd′(z) where θdz ̸= 0.

This in turn simplifies the updates for η and β in (4.10) and (4.11).

We note that the simplicity of our update equations comes from the fact that

the Add′ is Poisson, and that its mean is a multilinear function of the parameters.

Models where Add′ is Bernoulli-distributed with a more complicated link probability,

such as a logistic function, have more complicated derivatives of the likelihood, and

therefore more complicated update equations.

Note also that this EM algorithm is exact, in the sense that the maximum-

likelihood estimators {θ̂, β̂, η̂} are fixed points of the update equations. This is be-

cause the E step (4.9) is exact, since the conditional distribution of topics associated

with each word occurrence and each link is a product distribution, which we can

describe exactly with hdw and qdd′ . (There are typically multiple fixed points, so in

practice we run our algorithm with many different initial conditions, and take the

fixed point with the highest likelihood.)

This exactness is due to the fact that the topic mixtures θd are parameters to
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be inferred. In models such as lda and mmsb where θd is a hidden variable inte-

grated over a Dirichlet prior, the topics associated with each word and link have

a complicated joint distribution that can only be approximated using sampling or

variational methods. (To be fair, recent advances such as stochastic optimization

based on network subsampling [28] have shown that approximate inference in these

models can be carried out quite efficiently.)

On the other hand, in the context of finding communities in networks, models

with Dirichlet priors have been observed to generalize more successfully than Poisson

models such as bkn [28]. Happily, we can impose a Dirichlet prior on θd with no loss

of efficiency, simply by including pseudocounts in the update equations—in essence

adding additional words and links that are known to come from each topic. This lets

us obtain a maximum a posteriori (MAP) estimate of an lda-like model. We leave

this as a direction for future work.

4.2.4 Discrete labels and local search

Our model, like plsa and the bkn model, lets us infer a soft classification—a mixture

of topic labels or community memberships for each document. However, we often

want to infer categorical labels, where each document d is assigned to a single topic

1 ≤ zd ≤ K. A natural way to do this is to let zd be the most-likely label in the

inferred mixture, ẑd = argmaxz θdz. This is equivalent to rounding θd to a delta

function, θdz = 1 for z = ẑd and 0 for z ̸= ẑd.

If we wish, we can improve these discrete labels further using local search. If each
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document has just a single topic, the log-likelihood of our model is

Lcontent
d =

W∑
w=1

Cdw log βzdw (4.13)

Llinks =
1

2

∑
dd′

Add′ log ηzdzd′ . (4.14)

Note that here η is a matrix, with off-diagonal entries that allow documents with

different topics zd, zd′to be linked. Otherwise, these discrete labels would cause the

network to split into K separate components.

Let nz denote the number of documents of topic z, let Lz =
∑

d:zd=z
Ld be their

total length, and let Czw =
∑

d:zd=z
Cdw be the total number of times w appears in

them. Let mzz′ denote the total number of links between documents of topics z and

z′, counting each link twice if z = z′. Then the MLEs for β and η are

β̂zw =
Czw
Lz

, η̂zz′ =
mzz′

nznz′
. (4.15)

Applying these MLEs in (4.13) and (4.14) gives us a point estimate of the likelihood

of a discrete topic assignment zd, which we can normalize or reweight as discussed

in Section 4.2.2 if we like. We can then maximize this likelihood using local search:

for instance, using the Kernighan-Lin heuristic as in [33] or a Monte Carlo algorithm

to find a local maximum of the likelihood in the vicinity of ẑ. Each step of these

algorithms changes the label of a single document d, so we can update the values

of nz, Lz, Czw, and mzz′ and compute the new likelihood in O(K + Rd + κd) time.

In our experiments we used the KL heuristic, and found that for some data sets it

noticeably improved the accuracy of our algorithm for the document classification

task.
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4.3 Experimental results

In this section we present empirical results on our model and our algorithm for

unsupervised document classification and link prediction. We compare its accuracy

and running time with those of several other methods, testing it on three real-world

document citation networks.

4.3.1 Data sets

The top portion of Table 4.1 lists the basic statistics for three real-world corpora [50]:

Cora, Citeseer, and PubMed1. Cora and Citeseer contain papers in machine learning,

with K = 7 topics for Cora and K = 6 for Citeseer. PubMed consists of medical

research papers on K = 3 topics, namely three types of diabetes. All three corpora

have ground-truth topic labels provided by human curators.

The data sets for the three corpora are slightly different. PubMed contains the

number of times Cdw each word appeared in each document, while Cora and Citeseer

record whether or not a word occurred at least once in the document. For Cora and

Citeseer, we treat Cdw as 0 or 1.

4.3.2 Models and implementations

We compare the Poisson Mixed-Topic Link Model (pmtlm) and its degree-corrected

variant, denoted pmtlm-dc, with phits-plsa, link-lda, c-pldc, and rtm (see Sec-

tion 4.1.2). We used our own implementation of both phits-plsa and rtm. For rtm,

we implemented the variational EM algorithm given in [13]. The implementation is

1These data sets are available for download at http://www.cs.umd.edu/projects/

linqs/projects/lbc/
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based on the lda code available from the authors2. We also tried the code provided

by J. Chang3, which uses a Monte Carlo algorithm for the E step, but we found the

variational algorithm works better on our data sets. While rtm includes a variety

of link probability functions, we only used the sigmoid function. We also assume a

symmetric Dirichlet prior. The results for link-lda and c-pldc are taken from [56].

Each E and M step of the variational algorithm for rtm performs multiple it-

erations until they converge on estimates for the posterior and the parameters [13].

This is quite different from our EM algorithm: since our E step is exact, we update

the parameters only once in each iteration. Our convergence condition for the E step

and for the entire EM algorithm are that the fractional increase of the log-likelihood

between iterations is less than 10−6; we performed a maximum of 50 iterations in

each E step and a maximum of 500 EM iterations for the entire algorithm. To opti-

mize the η parameters (see the graphical model in Section 4.1.2) rtm uses a tunable

regularization parameter ρ, which can be thought of as the number of observed non-

links. We tried various settings for ρ, namely 0.1M, 0.2M, 0.5M,M, 2M, 5M and

10M where M is the number of observed links, and tuned ρ separately for each data

set and each task. We used gradient descent to optimize the η parameters in each

M step.

As described in Section 4.2.2, for pmtlm, pmtlm-dc and phits-plsa we vary

the relative weight α of the likelihood of the content vs. the links, tuning α to its

best possible value for each data set and each task. For the PubMed data set, we

also normalized the content likelihood by the length of the documents.

2See http://www.cs.princeton.edu/~blei/lda-c/
3See http://www.cs.princeton.edu/~blei/lda/
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4.3.3 Document classification

Experimental setting

For pmtlm, pmtlm-dc and phits-plsa, we performed 500 independent runs of

the EM algorithm, each with random initial values of the parameters and topic

mixtures. For each run we iterated the EM algorithm up to 5000 times; we found

that it typically converges in fewer iterations, with the criterion that the fractional

increase of the log-likelihood for two successive iterations is less than 10−7. Figure 4.2

shows that the log-likelihood as a function of the number of iterations are quite

similar for all three data sets, even though these corpora have very different sizes.

This indicates that even for large data sets, our algorithm converges within a small

number of iterations, making its total running time linear in the size of the corpus.

For pmtlm and pmtlm-dc, we obtain discrete topic labels by running our EM

algorithm and rounding the topic mixtures as described in Section 4.2.4. We also

tested improving these labels with local search, using the Kernighan-Lin heuristic

to change the label of one document at a time until we reach a local optimum of

the likelihood. More precisely, of those 500 runs, we took the T best fixed points of

the EM algorithm (i.e., with the highest likelihood) and attempted to improve them

further with the KL heuristic. We used T = 50 for Cora and Citeseer and T = 5 for

PubMed.

For rtm, in each E step, we initialize the variational parameters randomly, and

in each M step we initialize the hyperparameters randomly. We execute 500 inde-

pendent runs for each setting of the tunable parameter ρ.
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Figure 4.2: The average log-likelihood of the PMTLM and PMTLM-DC models as
a function of the number of EM iterations, normalized so that 0 and 1 are the initial
and final log-likelihood for 5000 EM iterations. Each points is the average over 100
independent runs. In both models and all three data sets, we approach 1 after just
1000 iterations, showing that the convergence time is roughly constant as a function
of the size of the corpus.

Metrics

For each algorithm, we used several measures of the accuracy of the inferred labels as

compared to the human-curated ones. The Normalized Mutual Information (NMI)

between two labelings C1 and C2 is defined as

NMI(C1, C2) =
MI(C1, C2)

max(H(C1),H(C2))
. (4.16)

Here MI(C1, C2) is the mutual information between C1 and C2, and H(C1) and H(C2)

are the entropies of C1 and C2 respectively. Thus the NMI is a measure of how much

information the inferred labels give us about the true ones. We also used the Pairwise

F-measure (PWF) [8] and the Variation of Information (VI) [40] (which we wish to

minimize).
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Cora Citeseer PubMed

Statistics

K 7 6 3
N 2,708 3,312 19,717
M 5,429 4,608 44,335
W 1,433 3,703 4,209
R 49,216 105,165 1,333,397

Time (sec)

EM (plsa) 28 61 362
EM (phits-plsa) 40 67 445
EM (pmtlm) 33 64 419
EM (pmtlm-dc) 36 64 402
EM (rtm) 992 597 2,194
KL (pmtlm) 375 618 13,723
KL (pmtlm-dc) 421 565 13,014

Table 4.1: The statistics of the three data sets, and the mean running time, for the
EM algorithms in our model PMTLM, its degree-corrected variant PMTLM-DC,
and PLSA, PHITS-PLSA, and RTM. Each corpus has K topics, N documents,
M links, a vocabulary of size W , and a total size R. Running times for our al-
gorithm, PLSA, and PHITS-PLSA are given for one run of 5000 EM iterations.
Running times for RTM consist of up to 500 EM iterations, or until the convergence
criteria are reached. Our EM algorithm is highly scalable, with a running time that
grows linearly with the size of the corpus. In particular, it is much faster than the
variational algorithm for RTM. Improving discrete labels with the Kernighan-Lin
heuristic (KL) increases our algorithm’s running time, but improves its accuracy for
document classification in Cora and Citeseer.
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Results

The best NMI, VI, and PWF we observed for each algorithm are given in Table 4.2,

where for link-lda and c-pldc we quote results from [56]. The metrics of NMI

and PWF used in [56] are identical to ours. For algorithms with tunable parameters,

including ours, phits-plsa and rtm, we tuned them based on the entire data set

in order to measure its best possible performance. Of course, in practice one would

tune these parameters based on partial knowledge, such as the topics of a validation

set of documents, and then use those parameter values to generalize to the test set.

We see that even without the additional step of local search, our algorithm does

very well, outperforming all other methods we tried on Citeseer and PubMed and all

but c-pldc on Cora. (Note that we did not test link-lda or c-pldc on PubMed.)

Degree correction (pmtlm-dc) improves accuracy significantly for PubMed.

Refining our labeling with the KL heuristic improved the performance of our

algorithm significantly for Cora and Citeseer, giving us a higher accuracy than all

the other methods we tested. For PubMed, local search did not increase accuracy

in a statistically significant way. In fact, on some runs it decreased the accuracy

slightly compared to the initial labeling ẑ obtained from our EM algorithm; this is

counterintuitive, but it shows that increasing the likelihood of a labeling in the model

can decrease its accuracy.

In Figure 4.3, we show how the performance of pmtlm, pmtlm-dc, phits-plsa

varies as a function of α, the relative weight of content vs. links. Recall that at α = 0

these algorithms label documents solely on the basis of their links, while at α = 1

they only pay attention to the content. Each point consists of the top 20 runs with

that value of α.

Figure 4.3 also shows that the optimal α and its sensitivity to performance differs

between data sets. For Cora and Citeseer, there is an intermediate value of α at which
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pmtlm and pmtlm-dc have the best accuracy. However, this peak is fairly broad,

showing that we do not have to tune α very carefully. For PubMed, where we also

normalized the content information by document length, pmtlm-dc performs best

at a particular value of α.

We compare the running time of these algorithms, including pmtlm, pmtlm-dc

with and without the kl heuristic, in Table 4.1. For algorithms with tunable pa-

rameters, we show the running time for a single value of that parameter. For our

algorithms and phits-plsa, we show the running time for α = 0.5, giving the con-

tent and the links equal weight. We see that our EM algorithm is much faster than

the variational EM algorithm for rtm, and is scalable in that it grows linearly with

the size of the corpus.

4.3.4 Link prediction

Link prediction (e.g. [16, 36, 59]) is a natural generalization task in networks, and

another way to measure the quality of our model and our EM algorithm. Based

on a training set consisting of a subset of the links, our goal is to rank all pairs

without an observed link according to the probability of a link between them. For

our models, we rank pairs according to the expected number of links Add′ in the

Poisson distribution, (4.2) and (4.3), which is monotonic in the probability that at

least one link exists.

We can then predict links between those pairs where this probability exceeds

some threshold. Since we are agnostic about this threshold and about the cost of

Type I vs. Type II errors, we follow other work in this area by defining the accuracy

of our model as the AUC, i.e. the probability that a random true positive link is

ranked above a random true non-link. Equivalently, this is the area under the receiver

operating characteristic curve (ROC). Our goal is to do better than the baseline AUC
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of 1/2, corresponding to a random ranking of the pairs.

We carried out 10-fold cross-validation, in which the links in the original graph

are partitioned into 10 subsets with equal size. For each fold, we use one subset as

the test links, and train the model using the links in the other 9 folds. We evaluated

the AUC on the held-out links and the non-links. For Cora and Citeseer, all the non-

links are used. For PubMed, we randomly chose 10% of the non-links for comparison.

We trained the models with the same settings as those for document classification

in Section 4.3.3; we executed 100 independent runs for each test. Note that unlike

the document classification task, here we used the full topic mixtures to predict links,

not just the discrete labels consisting of the most-likely topic for each document.

Note that pmtlm-dc assigns Sd to be zero if the degree of d is zero. This makes

it impossible for d to have any test link with others if its observed degree is zero in

the training data. One way to solve this is to assign a small positive value to Sd even

if d’s degree is zero. Our approach assigns Sd to be the smallest value among those

Sd′ that are non-zero.

Figure 4.4(a) gives the AUC values for pmtlm and pmtlm-dc as a function of

the relative weight α of content vs. links. The green horizontal line in each of those

subplots represent the highest AUC value achieved by the rtm model for each data

set, using the best value of ρ among those specified in Section 4.3.3. Note that the

optimal value of the tunable parameters is task-dependent: the optimal value ρ in

rtm, or α in our algorithms and phits-plsa, is not necessarily the same for link

prediction as it is for document classification. Interestingly, for Cora and Citeseer

the optimal value of α is smaller than in Figure 4.3, showing that content is less

important for link prediction than for document classification. Thus, according to

our experiments on both document classification and link prediction, the best choice

of α depends not only on the data set, but also on the task.
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Figure 4.3: The accuracy of PMTLM, PMTLM-DC, and PHITS-PLSA on the
document classification task, measured by the NMI, as a function of the relative
weight α of the content vs. the links. At α = 0 these algorithms label documents
solely on the basis of their links, while at α = 1 they pay attention only to the
content. For Cora and Citeseer, there is a broad range of α that maximizes the
accuracy. For PubMed, the degree-corrected model PMTLM-DC performs best at
a particular value of α.

We also plot the receiver operating characteristic (ROC) curves and precision-

recall curves that achieve the highest AUC values in Figure 4.4(b) and Figure 4.4(c)

respectively. We see that, for all three data sets, our models outperform rtm, and

that the degree-corrected model pmtlm-dc is significantly more accurate than the

uncorrected one.
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(c) Precision-recall curves achieving the highest AUC values.

Figure 4.4: Performance on the link prediction task. For all three data sets and all
the α values, the PMTLM-DC model achieves higher accuracy than the PMTLM
model. In contrast to Figure 4.3, for this task the optimal value of α is relatively s-
mall, showing that the content is less important, and the topology is more important,
for link prediction than for document classification. The green line in Figure 4.4(a)
indicates the highest AUC achieved by the RTM model, maximized over the tunable
parameter ρ. Our models outperform RTM on all three data sets. In addition, the
degree-corrected model (PMTLM-DC) does significantly better than the uncorrect-
ed version (PMTLM).

4.3.5 Keywords of the inferred topics

We also tested our algorithm on a patent citation network, which consists of patents

related to “microprocessor” technologies. The network contains 1002 patents and
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1640 links. By extracting the words of the titles and abstracts in the patent docu-

ments, stemming the words, filtering the stop words and the words that appeared in

only one document, we get a vocabulary with 1692 words and a corpus of size 36814.

We used the Porter stemming algorithm to derive the stems of the words. For exam-

ple, the algorithm will reduce words “tested”, “testing” and “tests” to the root word

“test”. The stop words include those common English words such as “a”, “be” and

“the”. We also filtered out those corpus stop words which are common words in the

whole corpus. These words include “microprocessor”, “data”, “system”, “method”

and so on. These corpus stop words have low tf-idf (term frequency–inverse docu-

ment frequency) values. A word with a tf-idf value below some threshold will be

filtered out.

We set the number of topics to 5. In Figure 4.5, we show how the document clas-

sification performance of pmtlm and pmtlm-dc varies as a function of the relative

weight α. Both pmtlm and pmtlm-dc achieve the highest performance at α = 0.2.

The NMI values are computed based on the official patent classification, which is

represented by a hierarchy of classes with two levels. We focus on the top level class-

es. For example, the class “710/5” and “710/113” belong to the same superclass of

“710”. A simple heuristic algorithm is applied to filter out those keywords that are

associated with multiple topics. Those keywords which are mostly associated with

only one topic given by the pmtlm model at α = 0.2 are listed in Table 4.3. From

these keywords, we can recognize that topic 1 is about data access and operations,

topic 2 is about testing and debugging, topic 3 is about the power supply, topic 4 is

about arithmetic and topic 5 is about control flow.
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Figure 4.5: The accuracy of PMTLM and PMTLM-DC on document classifica-
tion for the microprocessor patent network, measured by the NMIwith the official
classification, as a function of the relative weight α of the content vs. the links.

Table 4.3: Top 10 words for 5 topics in the microprocessor patent network.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

burst test power arithmetic instruct
coprocessor debug reset multiplex pipeline
intelligent emulate pulse ALU branch

asynchronous develop frequencies microinstruction superscalar
write-back embedded voltage bidirectional operand
attached trace consumption single-chip predict

transaction secure sense microprogram tag
DMA in-circuit drive busses subsequent

secondary encrypted adjust microcontrol dispatch
prioritization model interval simplified concurrence

4.4 Summary

Data that contains both links and content is very common in the real world, such as

the document citation networks and online web pages, and a couple of models have

61



Chapter 4. Scalable text and link analysis

been developed in literatures to use this kind of data for document classification or

link prediction. However these models have not achieved both high accuracy and high

scalability. For example, the phits-plsa model is scalable, but prone to overfitting,

and the rtm model, which is the state-of-the-art model, is not scalable.

Our model combines plsa and the bkn model. The simplicity of these models

allows us to use both the content and links in a very efficient way; and the natural

compatability of the plsa and bkn model makes the combined model achieve high

accuracy on both document classification and link prediciton. We developed a high-

ly scalabe EM algorithm to infer the parameters, and the time complexity of the

algorithm is linear in the size of the data set if we treat the number of topics as a

constant.

We choose the uniform prior on both the topic mixtures and the word-topic

distributions, i.e., those θ and β parameters. Although Dirichlet priors can be added

and the MAP estimation doesn’t increase the complexity of the algorithm, empirical

results on real-world data sets show that the uniform prior gives a very impressive

performance, out-performing other methods.

Balancing the content and links is a very important issue. In our models, we

use content normalization and linear interpolation to achieve the balance. Content

normalization makes documents of different sizes equally important; it also increases

the likelihood for the content and this is especially helpful when the word counts is

available, i.e., the Cdw is not limited to be binary. Linear interpolation lets us go

from only caring about links to only caring about content. It’s interesting that the

optimal value of the relative weight α for text vs. links depends on both the data

set and the task. Determining the optimal value of α automatically is tough but

important. We leave this to future work.
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Conclusions

Community detection in complex networks is challenging as there are different kinds

of community structure. Even in the same network, there may exist multiple commu-

nity structures with quite different perperties. Stochastic block models are powerful

tools for detecing communities based on the network topology. Based on the concept

of statistical equivalence, stochastic block models are able to detect functional com-

munities which may present assortative mixing, disassortative mixing or the mixture

of both. Due to the natural complexity of the community structures in real world,

such flexibility exhibited by stochastic block models is crucial. However, the overall

simplicity of the original block models makes them hard to achieve satisfactory per-

formance in many scenarios. In resent years, research focuses on developing extended

models to incorporate more information so that the new models are able to work for

those real world applications. My research on block models focuses on understanding

the underlying assumptions made by the models, the strengths and weaknesses of

the models, and developing new models to overcome those weaknesses and adapt

them to new applications.

The lesson we have learned is that a generative model can only learn from the data
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that it is required to generate. The degree-corrected block model provides a powerful

tool for dealing with networks with inhomogeneous degree distributions. However,

since degree-corrected models are given the vertex degrees as parameters and are

under no obligation to explain them, they cannot use degrees to help them classify

vertices. We have introduced the oriented degree-corrected (odc) model and degree

generation (dg) to address this problem. The odc and dg models allow for broad

or heavy-tailed degree distributions, while still being able to take vertex degrees

into account when inferring communities. Another limitation of the stochastic block

models is that these models classify nodes based on the network topology alone

because only the links are generated. This makes the models unable to use the rich

attributes of the nodes for community detection. We have developed the Poisson

mixed-topic link model (pmtlm) which generates both links and text.

The odc model is forced to generate edge orientations. Unlike the directed

degree-corrected (ddc) block model, which takes both in- and out-degrees as param-

eters, odc is able to capture certain correlations between the in- and out-degrees.

Simply put, for odc, two vertices are unlikely to be in the same community if one

has high in-degree and low out-degree while another has high out-degree and low

in-degree. If the network is highly directed or asymmetric, the edge orientations can

help odc find community structures that ddc fails to perceive.

When applying these models on directed networks, dc totally ignore the direc-

tion of the edges and generate the undirected version of the given network. dc

prefers community structures where the node total degrees are highly skewed in each

community. ddc generates the directed network completely, thus both the in- and

out-degrees are corrected. In other words, ddc prefers community structures where

in each community both the in- and out-degrees are highly skewed. odc generates

the undirected network first using the dc model and then generates the edge ori-

entations. odc prefers disassortative mixing and highly directed inter-community
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connections.

Non-degree-corrected and degree-corrected block models represents two extremes,

one prefers homogeneous degree distributions in each community and the other

prefers inhomogeneous degree distributions. Degree generation (dg) fills the gap be-

tween them. We consider degree-generated block models. These models use degree-

corrected block models as a subroutine, but they first generate the expected degree

of each vertex from a prior distribution in each community. dg works jointly with

degree-corrected block models, like the dc, ddc or odc, so that the joint model is

able to use the prior knowledge of the degree distributions in each community, which

can be homogeneous, inhomogeneous or any parameterized distribution families. dg

models can achieve high accuracy even when the density of connections within or

between communities is close to uniform, this is illustrated in synthetic networks

for small λ in Section 3.3.1. Augmenting block models, such as odc, with degree

generation also appears to speed up their convergence in some cases, helping sim-

ple algorithms like MCMC handle large networks without the benefit of expensive

preprocessing steps like the KL heuristic. However, the effectiveness of dg depends

heavily on knowing the correct form of the degree distribution in each community.

With all these variants of the block model, ranging from the “classic” version

to degree-corrected and degree-generated variants, we now have a wide variety of

tools for inferring structure in network data. Each model will perform better on

some networks and worse on others. A better understanding of the strengths and

weaknesses of each one—which kinds of structure they can see and which they are

blind to—will help us select the right algorithm each time we meet a new network.

All the above models focus on community detection in networks by the network

topology alone. Sometime topological information might be insufficient to the learn-

ing task. In that case the nodes’ attributes, such as the nodes’ location, demographic

variables, or (in document networks) their content, will be extremely useful for some
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applications. As illustrated in Section 4.3.3, when we use the link information sole-

ly, we failed to detect the document topics on those document-citation networks.

This is a lesson we learned from these real-world networks which have very sparse

pairwise connections and thus the network topology itself doesn’t present detectable

community structures.

We have introduced a new generative model, the Poisson mixed-topic link model

(pmtlm), for topic detection or link prediction in document networks. In this mod-

el, both the pairwise links and the document content are observations. The model

is requested to generate both links and words so that it can use both the link and

text information. The new model is a marriage between the text-based Probabilistic

Latent Semantic Analysis (plsa) [30] model and the link-based Ball-Karrer-Newman

(bkn) mixed membership block model [7]. Because of its mathematical simplicity

(compared with the models like rtm), its parameters can be inferred with a particu-

larly simple and efficient EM algorithm. Our experiments on document classification

and link prediction show that it achieves high accuracy and scalability for a variety

of data sets, outperforming other methods.
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Future Work

6.1 Model selection

In Chapter 3, we introduced a bunch of stochastic block models. In my work, the

strengths and weaknesses of these models are carefully analyzed. Section 3.4 gives a

summary. This provides us a guide to select a proper model based on the knowledge

about the community structure we are looking for. However in many scenarios, espe-

cially at the exploration stage, we just have no idea about the community structure

at all. All we have is the network data itself. In that case, we want to choose the

model based on the data alone. This is a model selection problem, which is a very

important topic in statistics and machine learning research.

In Chapter 4, the Poisson mixed-topic link model also has two versions, and for

each version, we have a tunable parameter α to be determined. Choosing the right

version of the model and the best value of α is also a model selection problem. We are

assuming that the number of communities are known, but this is not true in many

real-world applications. Choosing the best value of community number is again

a model selection problem. We leave all these challenging problems to our future
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work and we believe different methods should be explored for different problems.

Some possible solutions include the information criterion method [3, 49], minimum

description length, hypothese testing, Bayesian model averaging, holdout and cross-

validation and so on.

6.2 Active learning

Our previous work in [42] describes an active learning method for community detec-

tion in networks. The underlying model used is a variant of the non-degree-corrected

stochastic block model. It will be interesting to try degree-corrected block model-

s, including dc, ddc and odc, for applications in which the degree-correction will

benefit us. The previous method relies on a MCMC Gibbs sampler, which makes it

hard to adapt this active learning method to the Poisson mixed-topic link models

where an efficient EM algorithm is used. That method is also not very scalable since

it needs many independent samples to estimate the mutual information. Exploring

new active learning methods that can work with the EM algorithm or designing a

MCMC algorithm for the mixed-topic link models will be two possible directions.

The first direction will be more appealing due to its scalability.
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Appendix A

Maximum likelihood estimates of

the DDC model

We maximize the log-likelihood function (3.4),

logP (G |S, ω, g) =
∑
u

(doutu logSout
u + dinu logSin

u )

+
∑
rs

(mrs logωrs − κoutr κins ωrs) , (A.1)

where we have imposed the constraints on the S parameters∑
u:gu=r

Sout
u = κoutr and

∑
u:gu=r

Sin
u = κinr . (A.2)

For each block r, we associate Lagrange multipliers λoutr , λinr with these constraints.

For each vertex u, taking the partial derivative of the log-likelihood with respect to

Sout
u and Sin

u gives

doutu

Sout
u

= λoutgu and
dinu
Sin
u

= λingu . (A.3)

To satisfy the constraints (A.2), we take λoutr = λinr = 1 for all r, so that

Ŝout
u = doutu and Ŝin

u = dinu . (A.4)
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Setting the partial derivative of the log-likelihood function with respect to ωrs to

zero then gives

ω̂rs =
mrs

κoutr κins
. (A.5)
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Another view of the ODC model

Here we show that the oriented degree-corrected (odc) model is a special case of the

directed degree-corrected (ddc) model. Recall that the ODC model first generates

an undirected graph according to the DC model with parameters Su and ωrs, and

then orients each edge (u, v) from u to v with probability ρgu,gv . The number of

directed edges from u to v is then Poisson-distributed as

Auv ∼ Poi(SuSvωgu,gvρgu,gv) . (B.1)

But if we write

ω′
rs = ωrsρrs , (B.2)

then

Auv ∼ Poi(SuSvω
′
gu,gv) . (B.3)

Thus ODC is the special case of DDC where Sin
u = Sout

u = Su for all vertices u.

For completeness, we check that the two models correspond when we set these

parameters equal to their MLEs. We impose the constraint
∑

u:gu=r
Su = κr =
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κoutr + κinr for all blocks r. Ignoring constants, the log-likelihood is then

logP (G |S, ω′, g) =
∑
u

du logSu +
∑
rs

(mrs logω
′
rs − κrκsω

′
rs) , (B.4)

where du = doutu + dinu . The MLEs for Su and ω′
rs are then

Ŝu = du , ω̂′
rs =

mrs

κrκs
. (B.5)

Thus ω̂′
rs = ω̂rsρ̂rs where

ω̂rs =
m̄rs

κrκs
and ρ̂rs =

mrs

m̄rs

, (B.6)

recovering (3.11).
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Bayesian estimation for DG

models

Bayesian inference focuses on posterior distributions of parameters rather than on

point estimates. In hierarchical models like dg-ddc, the full Bayesian posterior of

the S parameters (omitting the other parameters g and ω) is

P (S |G) =
∫
P (S |G,ψ)P (ψ |G) dψ . (C.1)

Here we employ the Empirical Bayesian method, and use point estimates for the

hyperparameters ψ, namely their MLEs ψ̂,

ψ̂ = argmax
ψ

P (G |ψ)

= argmax
ψ

∫
P (G |S, ψ)P (S |ψ) dS . (C.2)
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With this approximation we have

P (S |G) ≈ P (S |G, ψ̂)

=
P (G |S)P (S | ψ̂)

P (G | ψ̂)

=
P (G |S)P (S | ψ̂)∫

P (G |S, ψ̂)P (S | ψ̂) dS
, (C.3)

where we used Bayes’ rule in the second line.

Computing the posterior P (S |G) is usually difficult, as the integral in the de-

nominator of (C.3) is often intractable. However, with a clever choice of the prior

distribution P (S |ψ), we can work out an analytic solution. It is called the conjugate

prior of the likelihood term. We focus here on dg-ddc; the calculations for other

degree-generated models are similar.

Say that a random variable X is Gamma-distributed with parameters α, β, and

write X ∼ Γ(α, β), if its probability distribution is

f(x;α, β) =
βα

Γ(α)
xα−1 e−βx . (C.4)

In dg-ddc, the likelihood (3.3) can be written (where we have plugged in the MLEs

for ω, and substituted κoutr =
∑

u:gu=r
doutu )

P (G |Sout) =

∏
u(S

in)d
in
u
∏

rs ω
mrs
rs∏

uv Auv!

∏
u

(Sout
u )d

out
u exp

(
−Sout

u

)
. (C.5)

If we assume that the Sin and Sout for each u are independent, this is proportional

to a product of Gamma distributions with parameters α = doutu + 1 and β = 1 for

each Sout
u .

A natural conjugate prior for Gamma distributions is the Gamma distribution

itself. Let the hyperparameters ψout
r for each block r consist of a pair (αout

r , βout
r ),

and consider the prior

Sout
u ∼ Γ(αout

gu , β
out
gu ) . (C.6)
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That is,

P (Sout
u |ψout

gu ) =
(βout

gu )α
out
gu

Γ(αout
gu )

(Sout
u )α

out
gu −1 exp(−βout

gu S
out
u ) , (C.7)

Multiplying this prior by the likelihood (C.5) stays within the family of Gamma

distributions, and simply updates the parameters:

P (Sout
u |G) ∝ P (Sout

u |ψout
gu )P (G |Sout)

∝ (Sout
u )α

out
gu

+doutu −1 exp
(
−Sout

u

(
βout
gu + 1

))
. (C.8)

Thus the posterior distribution is

Sout
u ∼ Γ

(
αout
gu + doutu , βout

gu + 1
)
. (C.9)

Note that if we use a uninformative prior, i.e., in the limit αout
gu = 1 and βout

gu = 0,

the Gamma prior reduces to a uniform prior. The maximum a posteriori (MAP)

estimate of Sout
u is

Ŝout
u = doutu , (C.10)

and similarly for Sin
u , just as we obtained for the MLEs in (3.5).

However, our goal is to integrate over S, not focus on its MAP estimate. So let us

continue the Bayesian analysis. Assuming the S parameters are independent, then

their joint posterior is simply a product of their individual posteriors

P (S|G) =
∏
u

P (Sout
u |G)P (Sin

u |G)

=
∏
u

f
(
Sout
u ;αout

gu + doutu , βout
gu + 1

)
f
(
Sin
u ;α

in
gu + dinu , β

in
gu + 1

)
. (C.11)
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Then we can calculate the integral in (C.2) and (C.3) by the simple algebra:∫
P (G |S, ψ)P (S |ψ) dS =

P (G |S)P (S |ψ)
P (S |G)

=

∏
u f(S

out
u ; doutu + 1, 1) f(Sin

u ; d
in
u + 1, 1) f(Sout

u ;αout
gu , β

out
gu ) f(Sin

u ;α
in
gu , β

in
gu)∏

u f
(
Sout
u ;αout

gu + doutu , βout
gu + 1

)
f
(
Sin
u ;α

in
gu + dinu , β

in
gu + 1

)
=

∏
u β

out
gu

αout
gu βin

gu

αin
guΓ
(
αout
gu + doutu

)
Γ
(
αin
gu + dinu

)∏
u

(
βout
gu + 1

)αout
gu

+doutu
(
βin
gu + 1

)αin
gu

+dinu Γ(doutu + 1)Γ(dinu + 1)Γ
(
αout
gu

)
Γ
(
αin
gu

) .
(C.12)

Now that the dependence of the numerator and denominator on S has cancelled out,

the integral is a function only of the hyperparameters ψ, making it possible to do

the point estimate of ψ in (C.2). In our case, optimizing for ψ̂ requires some numeric

techniques, but it is nonetheless doable.

Empirical Bayesian solution not only gives better approximation to the original

problem, it also make it possible to integrate prior knowledge if available. On top

of that, because the posterior is now a direct function of the hyperparameters ψ, we

no longer have to worry about the Poisson noise when estimating ψ indirectly from

degrees.

On a final note, the above result only holds for Gamma priors. With any other

prior, the integral may not be this simple.
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Power-law distribution with upper

bound

In this section, we show that imposing an upper bound on our power-law distributions

in order to ensure a certain average degree does not appreciably change the procedure

of [15] for estimating the exponent. Suppose x is distributed as a power law lower

bound xmin, upper bound xmax, and exponent α > 0. Then

p(x) =
α− 1

x1−αmin − x1−αmax

x−α, xmin ≤ x ≤ xmax . (D.1)

Given a random sample x = {x1, . . . , xn} drawn from this distribution independently,

the likelihood function is

p(x) =
n∏
i=1

α− 1

x1−αmin − x1−αmax

x−αi =

(
α− 1

x1−αmin − x1−αmax

)n n∏
i=1

x−αi . (D.2)

Thus, the log-likelihood is

log p(x) = n
(
log(α− 1)− log

(
x1−αmin − x1−αmax

))
− α

n∑
i=1

log xi . (D.3)

Taking the derivative with respect to α gives

∂ log p(x)

∂α
= n

(
1

α− 1
+
x1−αmin log xmin − x1−αmax log xmax

x1−αmin − x1−αmax

)
−

n∑
i=1

log xi . (D.4)
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Setting (D.4) to zero, we get

1

α− 1
+
x1−αmin log xmin − x1−αmax log xmax

x1−αmin − x1−αmax

=

∑n
i=1 log xi
n

. (D.5)

If xmin = 1 and xmax → ∞, then solving (D.5) gives the MLE for α just as in (3.17).
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Update equations for PMTLM

In this appendix, we derive the update equations (4.10)–(4.12) for the parameters η,

β, and θ, giving the M step of our algorithm.

Recall that the likelihood is given by (4.7) and (4.8). For identifiability, we impose

the normalization constraints

∀z :
∑
w

βzw = 1 (E.1)

∀d :
∑
z

θdz = 1 (E.2)

For each topic z, taking the derivative of the likelihood with respect to ηz gives

0 =
1

1− α

∂L
∂ηz

=
1

ηz

∑
dd′

Add′qdd′(z)−
∑
dd′

θdzθd′z . (E.3)

Thus

ηz =

∑
dd′ Add′qdd′(z)∑
dd′ θdzθd′z

=

∑
dd′ Add′qdd′(z)

(
∑

d θdz)
2 . (E.4)

Plugging this in to (4.8) makes the last term a constant, −1/2
∑

dd′ Add′ = −M .

Thus we can ignore this term when estimating θdz.
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Similarly, for each topic z and each word w, taking the derivative with respect to

βzw gives

νz =
1

α

∂L
∂βzw

=
1

βzw

∑
d

1

Ld
Cdwhdw(z) , (E.5)

where νz is the Lagrange multiplier for (E.1). Normalizing βz determines νz, and

gives

βzw =

∑
d(1/Ld)Cdwhdw(z)∑

d(1/Ld)
∑

w′ Cdw′hdw′(z)
. (E.6)

Finally, for each document d and each topic z, taking the derivative with respect

to θdz gives

λd =
∂L
∂θdz

=
α

Ldθdz

∑
w

Cdwhdw(z) +
1− α

θdz

∑
d′

Add′qdd′(z) , (E.7)

where λd is the Lagrange multiplier for (E.2). Normalizing θd determines λd and

gives

θdz =
(α/Ld)

∑
w Cdwhdw(z) + (1− α)

∑
d′ Add′qdd′(z)

α + (1− α)κd
. (E.8)
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Appendix F

Update equations for PMTLM-DC

Recall that in the degree-corrected model pmtlm-dc, the number of links between

each pair of documents d, d′ is Poisson-distributed with mean

SdSd′
∑
z

ηzθdzθd′z . (F.1)

To make the model identifiable, in addition to (E.1) and (E.2), we impose the fol-

lowing constraint on the degree-correction parameters,

∀z :
∑
d

Sdθdz = 1 . (F.2)

With this constraint, we have

L = α
∑
d

1

Ld

∑
wz

Cdwhdw(z) log
θdzβzw
hdw(z)

+ (1− α)
∑
d

κd log Sd

+
1− α

2

∑
dd′z

(
Add′qdd′(z) log

ηzθdzθd′z
qdd′(z)

− SdSd′ηzθdzθd′z

)
. (F.3)

The update equation (E.6) for β remains the same, since the degree-correction only

affects the part of the model that generates the links, not the words. We now derive

the update equations for η, S, and θ.
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Appendix F. Update equations for PMTLM-DC

For each topic z, taking the derivative of the likelihood with respect to ηz gives

0 =
2

1− α

∂L

∂ηz
=

1

ηz

∑
dd′

Add′qdd′(z)−
∑
dd′

SdSd′θdzθd′z

=
1

ηz

∑
dd′

Add′qdd′(z)− 1 , (F.4)

where we used (F.2). Thus

ηz =
∑
dd′

Add′qdd′(z) , (F.5)

so ηz is simply the expected number of links caused by topic z. In particular,

∑
z

ηz =
∑
dd′

Add′ =
∑
d

κd = 2M . (F.6)

For Sd, we have

1

1− α

∂L

∂Sd
=
κd
Sd

−
∑
d′z

Sd′ηzθdzθd′z

=
κd
Sd

−
∑
z

ηzθdz =
∑
z

ξzθdz , (F.7)

where ξz is the Lagrange multiplier for (F.2). Thus

Sd =
κd∑

z(ηz + ξz)θdz
. (F.8)

We will determine ξz below. However, note that multiplying both sides of (F.7) by

Sd, summing over d, and applying (F.2) and (F.6) gives

∑
z

ξz = 0 . (F.9)
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Most importantly, for θ we have

∂L

∂θdz
=

1

θdz

(
α

Ld

∑
w

Cdwhdw(z) + (1− α)
∑
d′

Add′qdd′(z)

)
− (1− α)

∑
d′

SdSd′ηzθd′z

=
1

θdz

(
α

Ld

∑
w

Cdwhdw(z) + (1− α)
∑
d′

Add′qdd′(z)

)
− (1− α)Sdηz

= λd + (1− α)Sdξz , (F.10)

where λd is the Lagrange multiplier for (E.2), and where we applied (F.2) in the

second equality. Multiplying both sides of (F.10) by θdz, summing over z, and

applying (F.8) gives

λd = α . (F.11)

Summing over d and applying (F.2), (F.5), and (F.11) gives

1− α

α
ξz =

∑
d

1

Ld

∑
w

Cdwhdw(z)−
∑
d

θdz

=
∑
d

1

Ld

∑
w

Cdw (hdw(z)− θdz) . (F.12)

Thus ξz measures how the inferred topic distributions of the words hdw(z) differ from

the topic mixtures θdz.

Finally, (F.10) and (F.11) give

θdz =
(α/Ld)

∑
w Cdwhdw(z) + (1− α)

∑
d′ Add′qdd′(z)

α + (1− α)(ηz + ξz)Sd
, (F.13)

where ηz and ξz are given by (F.5) and (F.12).
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Update Equations with Dirichlet

Prior

If we impose a Dirichlet prior on θ, with parameters {γz} for each topic z, this gives

an additional term
∑

dz(γz − 1) log θdz in the log-likelihood of both the pmtlm and

pmtlm-dc models. This is equivalent to introducing pseudocounts tz = γz − 1 for

each z, which we can think of as additional words or links that we know are due

to topic z. Our original models, without this term, correspond to the uniform prior

with γz = 1 and tz = 0. However, as long as γz ≥ 1 so that the pseudocounts are

nonnegative, we can infer the parameters of our model in the same way with no loss

of efficiency.

In the pmtlm model, (E.8) becomes

θdz =
tz + (α/Ld)

∑
w Cdwhdw(z) + (1− α)

∑
d′ Add′qdd′(z)∑

z tz + α + (1− α)κd
. (G.1)

In the degree-corrected model pmtlm-dc, (F.11) and (F.12) become

λd = α +
∑
z

tz (G.2)
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Appendix G. Update Equations with Dirichlet Prior

and

1− α

α
ξz =

∑
d

1

Ld

∑
w

Cdw (hdw(z)− θdz)

+
1

α

∑
d

(
tz − θdz

∑
z′

tz′

)
. (G.3)

Note that ξz has two contributions. One measures, as before, how the inferred topic

distributions of the words hdw(z) differ from the topic mixtures θdz, and the other

measures how the fraction tz/
∑

z′ tz′ of pseudocounts for topic z differs from θdz.

Finally, (F.13) becomes

θdz =
tz + (α/Ld)

∑
w Cdwhdw(z) + (1− α)

∑
d′ Add′qdd′(z)

α + (1− α)(ηz + ξz)Sd +
∑

z′ tz′
, (G.4)

where ηz and ξz are given by (F.5) and (G.3).
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