19,350 research outputs found

    Community detection by using the extended modularity

    Get PDF
    This article is about community detection algorithms in graphs. First a new method will be introduced, which is based on an extension [16] of the commonly used modularity [17, 18, 19, 20] and gives overlapping communities. We list and compare the results given by our new method and some other algorithms yielding either overlapping or non-overlapping communities. While the main use of the proposed algorithm is benchmarking, we also consider the possibility of hot starts, and some further extensions that considers the degree distribution of the graphs

    Link Clustering with Extended Link Similarity and EQ Evaluation Division.

    Get PDF
    Link Clustering (LC) is a relatively new method for detecting overlapping communities in networks. The basic principle of LC is to derive a transform matrix whose elements are composed of the link similarity of neighbor links based on the Jaccard distance calculation; then it applies hierarchical clustering to the transform matrix and uses a measure of partition density on the resulting dendrogram to determine the cut level for best community detection. However, the original link clustering method does not consider the link similarity of non-neighbor links, and the partition density tends to divide the communities into many small communities. In this paper, an Extended Link Clustering method (ELC) for overlapping community detection is proposed. The improved method employs a new link similarity, Extended Link Similarity (ELS), to produce a denser transform matrix, and uses the maximum value of EQ (an extended measure of quality of modularity) as a means to optimally cut the dendrogram for better partitioning of the original network space. Since ELS uses more link information, the resulting transform matrix provides a superior basis for clustering and analysis. Further, using the EQ value to find the best level for the hierarchical clustering dendrogram division, we obtain communities that are more sensible and reasonable than the ones obtained by the partition density evaluation. Experimentation on five real-world networks and artificially-generated networks shows that the ELC method achieves higher EQ and In-group Proportion (IGP) values. Additionally, communities are more realistic than those generated by either of the original LC method or the classical CPM method

    Node-Centric Detection of Overlapping Communities in Social Networks

    Full text link
    We present NECTAR, a community detection algorithm that generalizes Louvain method's local search heuristic for overlapping community structures. NECTAR chooses dynamically which objective function to optimize based on the network on which it is invoked. Our experimental evaluation on both synthetic benchmark graphs and real-world networks, based on ground-truth communities, shows that NECTAR provides excellent results as compared with state of the art community detection algorithms

    Extension of Modularity Density for Overlapping Community Structure

    Full text link
    Modularity is widely used to effectively measure the strength of the disjoint community structure found by community detection algorithms. Although several overlapping extensions of modularity were proposed to measure the quality of overlapping community structure, there is lack of systematic comparison of different extensions. To fill this gap, we overview overlapping extensions of modularity to select the best. In addition, we extend the Modularity Density metric to enable its usage for overlapping communities. The experimental results on four real networks using overlapping extensions of modularity, overlapping modularity density, and six other community quality metrics show that the best results are obtained when the product of the belonging coefficients of two nodes is used as the belonging function. Moreover, our experiments indicate that overlapping modularity density is a better measure of the quality of overlapping community structure than other metrics considered.Comment: 8 pages in Advances in Social Networks Analysis and Mining (ASONAM), 2014 IEEE/ACM International Conference o

    Additive Approximation Algorithms for Modularity Maximization

    Get PDF
    The modularity is a quality function in community detection, which was introduced by Newman and Girvan (2004). Community detection in graphs is now often conducted through modularity maximization: given an undirected graph G=(V,E)G=(V,E), we are asked to find a partition C\mathcal{C} of VV that maximizes the modularity. Although numerous algorithms have been developed to date, most of them have no theoretical approximation guarantee. Recently, to overcome this issue, the design of modularity maximization algorithms with provable approximation guarantees has attracted significant attention in the computer science community. In this study, we further investigate the approximability of modularity maximization. More specifically, we propose a polynomial-time (cos(354π)1+58)\left(\cos\left(\frac{3-\sqrt{5}}{4}\pi\right) - \frac{1+\sqrt{5}}{8}\right)-additive approximation algorithm for the modularity maximization problem. Note here that cos(354π)1+58<0.42084\cos\left(\frac{3-\sqrt{5}}{4}\pi\right) - \frac{1+\sqrt{5}}{8} < 0.42084 holds. This improves the current best additive approximation error of 0.46720.4672, which was recently provided by Dinh, Li, and Thai (2015). Interestingly, our analysis also demonstrates that the proposed algorithm obtains a nearly-optimal solution for any instance with a very high modularity value. Moreover, we propose a polynomial-time 0.165980.16598-additive approximation algorithm for the maximum modularity cut problem. It should be noted that this is the first non-trivial approximability result for the problem. Finally, we demonstrate that our approximation algorithm can be extended to some related problems.Comment: 23 pages, 4 figure

    Clustering and Community Detection in Directed Networks: A Survey

    Full text link
    Networks (or graphs) appear as dominant structures in diverse domains, including sociology, biology, neuroscience and computer science. In most of the aforementioned cases graphs are directed - in the sense that there is directionality on the edges, making the semantics of the edges non symmetric. An interesting feature that real networks present is the clustering or community structure property, under which the graph topology is organized into modules commonly called communities or clusters. The essence here is that nodes of the same community are highly similar while on the contrary, nodes across communities present low similarity. Revealing the underlying community structure of directed complex networks has become a crucial and interdisciplinary topic with a plethora of applications. Therefore, naturally there is a recent wealth of research production in the area of mining directed graphs - with clustering being the primary method and tool for community detection and evaluation. The goal of this paper is to offer an in-depth review of the methods presented so far for clustering directed networks along with the relevant necessary methodological background and also related applications. The survey commences by offering a concise review of the fundamental concepts and methodological base on which graph clustering algorithms capitalize on. Then we present the relevant work along two orthogonal classifications. The first one is mostly concerned with the methodological principles of the clustering algorithms, while the second one approaches the methods from the viewpoint regarding the properties of a good cluster in a directed network. Further, we present methods and metrics for evaluating graph clustering results, demonstrate interesting application domains and provide promising future research directions.Comment: 86 pages, 17 figures. Physics Reports Journal (To Appear
    corecore