95,926 research outputs found

    Unsupervised Graph Attention Autoencoder for Attributed Networks using K-means Loss

    Full text link
    Several natural phenomena and complex systems are often represented as networks. Discovering their community structure is a fundamental task for understanding these networks. Many algorithms have been proposed, but recently, Graph Neural Networks (GNN) have emerged as a compelling approach for enhancing this task.In this paper, we introduce a simple, efficient, and clustering-oriented model based on unsupervised \textbf{G}raph Attention \textbf{A}uto\textbf{E}ncoder for community detection in attributed networks (GAECO). The proposed model adeptly learns representations from both the network's topology and attribute information, simultaneously addressing dual objectives: reconstruction and community discovery. It places a particular emphasis on discovering compact communities by robustly minimizing clustering errors. The model employs k-means as an objective function and utilizes a multi-head Graph Attention Auto-Encoder for decoding the representations. Experiments conducted on three datasets of attributed networks show that our method surpasses state-of-the-art algorithms in terms of NMI and ARI. Additionally, our approach scales effectively with the size of the network, making it suitable for large-scale applications. The implications of our findings extend beyond biological network interpretation and social network analysis, where knowledge of the fundamental community structure is essential.Comment: 7 pages, 5 Figure

    Adapting Community Detection Approaches to Large, Multilayer, and Attributed Networks

    Get PDF
    Networks have become a common data mining tool to encode relational definitions between a set of entities. Whether studying biological correlations, or communication between individuals in a social network, network analysis tools enable interpretation, prediction, and visualization of patterns in the data. Community detection is a well-developed subfield of network analysis, where the objective is to cluster nodes into 'communities' based on their connectivity patterns. There are many useful and robust approaches for identifying communities in a single, moderately-sized network, but the ability to work with more complicated types of networks containing extra or a large amount of information poses challenges. In this thesis, we address three types of challenging network data and how to adapt standard community detection approaches to handle these situations. In particular, we focus on networks that are large, attributed, and multilayer. First, we present a method for identifying communities in multilayer networks, where there exist multiple relational definitions between a set of nodes. Next, we provide a pre-processing technique for reducing the size of large networks, where standard community detection approaches might have inconsistent results or be prohibitively slow. We then introduce an extension to a probabilistic model for community structure to take into account node attribute information and develop a test to quantify the extent to which connectivity and attribute information align. Finally, we demonstrate example applications of these methods in biological and social networks. This work helps to advance the understand of network clustering, network compression, and the joint modeling of node attributes and network connectivity.Doctor of Philosoph

    A Method for Characterizing Communities in Dynamic Attributed Complex Networks

    Full text link
    Many methods have been proposed to detect communities, not only in plain, but also in attributed, directed or even dynamic complex networks. In its simplest form, a community structure takes the form of a partition of the node set. From the modeling point of view, to be of some utility, this partition must then be characterized relatively to the properties of the studied system. However, if most of the existing works focus on defining methods for the detection of communities, only very few try to tackle this interpretation problem. Moreover, the existing approaches are limited either in the type of data they handle, or by the nature of the results they output. In this work, we propose a method to efficiently support such a characterization task. We first define a sequence-based representation of networks, combining temporal information, topological measures, and nodal attributes. We then describe how to identify the most emerging sequential patterns of this dataset, and use them to characterize the communities. We also show how to detect unusual behavior in a community, and highlight outliers. Finally, as an illustration, we apply our method to a network of scientific collaborations.Comment: IEEE/ACM International Conference on Advances in Social Network Analysis and Mining (ASONAM), P\'ekin : China (2014

    Community Structure Characterization

    Get PDF
    This entry discusses the problem of describing some communities identified in a complex network of interest, in a way allowing to interpret them. We suppose the community structure has already been detected through one of the many methods proposed in the literature. The question is then to know how to extract valuable information from this first result, in order to allow human interpretation. This requires subsequent processing, which we describe in the rest of this entry

    The Advantage of Evidential Attributes in Social Networks

    Get PDF
    Nowadays, there are many approaches designed for the task of detecting communities in social networks. Among them, some methods only consider the topological graph structure, while others take use of both the graph structure and the node attributes. In real-world networks, there are many uncertain and noisy attributes in the graph. In this paper, we will present how we detect communities in graphs with uncertain attributes in the first step. The numerical, probabilistic as well as evidential attributes are generated according to the graph structure. In the second step, some noise will be added to the attributes. We perform experiments on graphs with different types of attributes and compare the detection results in terms of the Normalized Mutual Information (NMI) values. The experimental results show that the clustering with evidential attributes gives better results comparing to those with probabilistic and numerical attributes. This illustrates the advantages of evidential attributes.Comment: 20th International Conference on Information Fusion, Jul 2017, Xi'an, Chin

    Debiasing Community Detection: The Importance of Lowly-Connected Nodes

    Get PDF
    Community detection is an important task in social network analysis, allowing us to identify and understand the communities within the social structures. However, many community detection approaches either fail to assign low degree (or lowly-connected) users to communities, or assign them to trivially small communities that prevent them from being included in analysis. In this work, we investigate how excluding these users can bias analysis results. We then introduce an approach that is more inclusive for lowly-connected users by incorporating them into larger groups. Experiments show that our approach outperforms the existing state-of-the-art in terms of F1 and Jaccard similarity scores while reducing the bias towards low-degree users
    • …
    corecore