17,118 research outputs found

    Stochastic Multi-Level Compositional Optimization Algorithms over Networks with Level-Independent Convergence Rate

    Full text link
    Stochastic multi-level compositional optimization problems cover many new machine learning paradigms, e.g., multi-step model-agnostic meta-learning, which require efficient optimization algorithms for large-scale applications. This paper studies the decentralized stochastic multi-level optimization algorithm, which is challenging because the multi-level structure and decentralized communication scheme may make the number of levels affect the order of the convergence rate. To this end, we develop two novel decentralized optimization algorithms to deal with the multi-level function and its gradient. Our theoretical results show that both algorithms can achieve the level-independent convergence rate for nonconvex problems under much milder conditions compared with existing single-machine algorithms. To the best of our knowledge, this is the first work that achieves the level-independent convergence rate under the decentralized setting. Moreover, extensive experiments confirm the efficacy of our proposed algorithms

    An Accelerated Decentralized Stochastic Proximal Algorithm for Finite Sums

    Get PDF
    Modern large-scale finite-sum optimization relies on two key aspects: distribution and stochastic updates. For smooth and strongly convex problems, existing decentralized algorithms are slower than modern accelerated variance-reduced stochastic algorithms when run on a single machine, and are therefore not efficient. Centralized algorithms are fast, but their scaling is limited by global aggregation steps that result in communication bottlenecks. In this work, we propose an efficient \textbf{A}ccelerated \textbf{D}ecentralized stochastic algorithm for \textbf{F}inite \textbf{S}ums named ADFS, which uses local stochastic proximal updates and randomized pairwise communications between nodes. On nn machines, ADFS learns from nmnm samples in the same time it takes optimal algorithms to learn from mm samples on one machine. This scaling holds until a critical network size is reached, which depends on communication delays, on the number of samples mm, and on the network topology. We provide a theoretical analysis based on a novel augmented graph approach combined with a precise evaluation of synchronization times and an extension of the accelerated proximal coordinate gradient algorithm to arbitrary sampling. We illustrate the improvement of ADFS over state-of-the-art decentralized approaches with experiments.Comment: Code available in source files. arXiv admin note: substantial text overlap with arXiv:1901.0986

    An Accelerated Decentralized Stochastic Proximal Algorithm for Finite Sums

    Get PDF
    Modern large-scale finite-sum optimization relies on two key aspects: distribution and stochastic updates. For smooth and strongly convex problems, existing decentralized algorithms are slower than modern accelerated variance-reduced stochastic algorithms when run on a single machine, and are therefore not efficient. Centralized algorithms are fast, but their scaling is limited by global aggregation steps that result in communication bottlenecks. In this work, we propose an efficient Accelerated Decentralized stochastic algorithm for Finite Sums named ADFS, which uses local stochastic proximal updates and randomized pairwise communications between nodes. On n machines, ADFS learns from nm samples in the same time it takes optimal algorithms to learn from m samples on one machine. This scaling holds until a critical network size is reached, which depends on communication delays, on the number of samples m, and on the network topology. We provide a theoretical analysis based on a novel augmented graph approach combined with a precise evaluation of synchronization times and an extension of the accelerated proximal coordinate gradient algorithm to arbitrary sampling. We illustrate the improvement of ADFS over state-of-the-art decentralized approaches with experiments

    Optimal Complexity in Non-Convex Decentralized Learning over Time-Varying Networks

    Full text link
    Decentralized optimization with time-varying networks is an emerging paradigm in machine learning. It saves remarkable communication overhead in large-scale deep training and is more robust in wireless scenarios especially when nodes are moving. Federated learning can also be regarded as decentralized optimization with time-varying communication patterns alternating between global averaging and local updates. While numerous studies exist to clarify its theoretical limits and develop efficient algorithms, it remains unclear what the optimal complexity is for non-convex decentralized stochastic optimization over time-varying networks. The main difficulties lie in how to gauge the effectiveness when transmitting messages between two nodes via time-varying communications, and how to establish the lower bound when the network size is fixed (which is a prerequisite in stochastic optimization). This paper resolves these challenges and establish the first lower bound complexity. We also develop a new decentralized algorithm to nearly attain the lower bound, showing the tightness of the lower bound and the optimality of our algorithm.Comment: Accepted by 14th Annual Workshop on Optimization for Machine Learning. arXiv admin note: text overlap with arXiv:2210.0786

    A Variance-Reduced Stochastic Gradient Tracking Algorithm for Decentralized Optimization with Orthogonality Constraints

    Full text link
    Decentralized optimization with orthogonality constraints is found widely in scientific computing and data science. Since the orthogonality constraints are nonconvex, it is quite challenging to design efficient algorithms. Existing approaches leverage the geometric tools from Riemannian optimization to solve this problem at the cost of high sample and communication complexities. To relieve this difficulty, based on two novel techniques that can waive the orthogonality constraints, we propose a variance-reduced stochastic gradient tracking (VRSGT) algorithm with the convergence rate of O(1/k)O(1 / k) to a stationary point. To the best of our knowledge, VRSGT is the first algorithm for decentralized optimization with orthogonality constraints that reduces both sampling and communication complexities simultaneously. In the numerical experiments, VRSGT has a promising performance in a real-world autonomous driving application
    • …
    corecore