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Abstract: 

Federated Averaging (FedAvg) is a leading decentralized machine learning approach, prioritizing data privacy. 

However, it faces challenges like non-identically distributed data, communication bottlenecks, and adversarial attacks. 

This abstract introduces a fuzzy-based FedAvg, leveraging fuzzy logic to manage uncertainty in decentralized 

environments. Fuzzy clustering adapts the model to varied data distributions, addressing non-IID challenges. Fuzzy 

membership functions enhance aggregation by introducing an adaptive weighting scheme, improving convergence and 

accuracy. The fuzzy approach incorporates privacy-preserving mechanisms, ensuring secure aggregation with 

homomorphic encryption and differential privacy. Simulations show improved convergence, resilience to non-IID data, 

and enhanced privacy compared to traditional FedAvg, contributing to more secure decentralized ML systems. 

 

1. Introduction 

In the rapidly evolving landscape of decentralized 

machine learning (ML), Federated Averaging (FedAvg) 

has emerged as a cornerstone, offering a promising 

avenue for model training while prioritizing the critical 

aspect of data privacy. However, conventional FedAvg 

methods grapple with multifaceted challenges, 

including non-identically distributed data, 

communication bottlenecks, and susceptibility to 

adversarial attacks. This research responds to these 

challenges by introducing an innovative and adaptive 

approach—fuzzy-based Federated Averaging—

designed to elevate both the robustness and privacy 

considerations within decentralized ML frameworks. 

Harnessing the power of fuzzy logic, our proposed 

fuzzy FedAvg navigates the inherent uncertainties and 

imprecisions that characterize real-world decentralized 

environments. Fuzzy clustering techniques, seamlessly 

integrated into our approach, empower the model to 

dynamically adapt to the diverse data distributions 

across participating devices. This adaptation mitigates 

the adverse effects of non-identically distributed data, 

offering a more resilient and responsive solution to the 

challenges posed by decentralized datasets. 

Additionally, the incorporation of fuzzy membership 

functions introduces a nuanced weighting scheme 

during the aggregation process, enhancing the 

convergence speed and accuracy of the global model. 

Federated learning (FL) is a privacy-preserving 

distributed machine learning (ML) paradigm [1]. In FL, 

a central server connects with enormous clients (e.g., 

mobile phones etc.); the clients keep their data without 

sharing it with the server. In each communication 

round, clients receive the current global model from the 

server, and a small portion of clients are selected to 

update the global model by running stochastic gradient 

descent (SGD) [2] for multiple iterations using local 

data. The central server then aggregates these updated 

parameters to obtain the updated global model. The 

above learning algorithm is known as federated average 

(FedAvg) [1]. In particular, if the clients are 

homogeneous, FedAvg is equivalent to the local SGD 

[3]. FedAvg involves multiple local SGD updates and 

one aggregation by the server in each communication 

round, which significantly reduces the communication 

cost between sever and clients compared to the 

conventional distributed training with one local SGD 

update and one communication. In FL applications, 
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large companies and government organizations usually 

play the role of the central server.  

On the one hand, since the number of clients in FL is 

massive, the communication cost between the server 

and clients can be a bottleneck [4]. On the other hand, 

the updated models collected from clients encode the 

private information of the local data; hackers can attack 

the central server to break the privacy of the whole 

system, which remains the privacy issue as a serious 

concern. To this end, decentralized federated learning 

has been proposed [5], [6], where all clients are 

connected with an undirected graph. Decentralized FL 

replaces the server-clients communication in FL with 

clients communication. In this paper, two issues about 

decentralized FL have been discussed: a) Although 

there is no expensive communication between server 

and clients in decentralized FL, the communication 

between local clients is costly when the ML model 

itself is large. Therefore, it is crucial to ask can we 

reduce the communication cost between clients b) 

Momentum is a well known acceleration technique for 

SGD [7]. It is natural to ask can we use SGD with 

momentum to improve the training of ML models in 

decentralized FL with theoretical convergence 

guarantee. 

Beyond addressing performance concerns, our fuzzy 

approach extends its impact to the realm of privacy 

preservation—a paramount consideration in 

decentralized ML. Through the implementation of 

secure aggregation techniques, such as homomorphic 

encryption and differential privacy, our fuzzy FedAvg 

ensures the robust protection of sensitive information 

during federated learning. This not only reduces the 

vulnerability to privacy breaches but also underscores 

our commitment to upholding user confidentiality in 

decentralized ML ecosystems. 

To systematically evaluate the effectiveness of our 

proposed fuzzy FedAvg, we conduct comprehensive 

simulations and experiments across diverse datasets 

and decentralized scenarios. The outcomes of our 

research showcase significant advancements, including 

improved convergence rates, heightened resilience to 

non-identically distributed data challenges, and 

enhanced privacy preservation when compared to 

conventional FedAvg approaches. This research marks 

a substantial contribution to the ongoing evolution of 

federated learning, presenting a fuzzy logic-based 

framework that adeptly addresses key challenges and 

sets the stage for the development of more resilient and 

secure decentralized ML systems. 

 

2. Literature Review 

We briefly review three lines of work that are most 

related to this paper, i.e., federated learning, 

decentralized training, and decentralized federated 

learning. Federated Learning. Many variants of FedAvg 

have been developed with theoretical guarantees. [8] 

uses the momentum method for local clients in 

FedAvg. [9] proposes the adaptive FedAvg, whose 

central parameter server uses the adaptive learning rate 

aggregate local models. Lazy and quantized gradients 

are used to reduce communications [10], [11]. [12] 

proposes a Newton-type scheme for FL. The 

convergence analysis of FedAvg on heterogeneous data 

is discussed by [13], [14]. The advances and open 

problems in FL is available in two survey papers [15], 

[16]. Decentralized algorithms are originally developed 

to calculate the mean of data that are distributed over 

multiple sensors [17], [18], [19], [20]. Decentralized 

gradient descents (DGD), one of the simplest and 

efficient decentralized algorithms, have been studied in 

[21], [22], [23], [24], [25]. In DGD, the convexity 

assumption is unnecessary [26], which makes DGD 

useful for non convex optimization. A provably 

convergent DSGD is proposed in [27], [28], [4]. The 

article [27] provides the complexity result of a 

stochastic decentralized algorithm. The article [28] 

designs a stochastic decentralized algorithm with the 

dual information and provide the theoretical 

convergence guarantee in [4] proves that DSGD 

outperforms SGD in communication efficiency. 

Asynchronous DSGD is analyzed in [29]. DGD with 

momentum is proposed in [30], [31]. Quantized DSGD 

has been proposed in [32]. Decentralized Federated 

Learning has been discussed in [33]. Reviews on 

Federated Learning have been made in [34]. A typical 

federated learning system with a star network topology, 

illustrated in Fig. 1, consists of a central serve r and 

many clients, where each client holds a local to train a 

shared global model in a coordinated manner 

iteratively. 

 

 
   

Fig 1: A typical federated learning system with 

federated averaging [35] 

 

3. Implementation 

Introducing fuzziness into Federated Averaging 

(FedAvg) involves incorporating fuzzy logic principles 

to manage uncertainty and imprecision inherent in 
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decentralized environments. Below is a detailed 

approach: 

 

 

1. Problem Identification: 

Clearly identify challenges in conventional FedAvg, 

including non-identically distributed data, 

communication bottlenecks, and susceptibility to 

adversarial attacks. 

2. Fuzzy Clustering for Dynamic Adaptation: 

Implement fuzzy clustering algorithms, such as Fuzzy 

C-Means (FCM) or Possibilistic C-Means (PCM), to 

partition participating devices into clusters. This 

introduces adaptability to varying data distributions by 

allowing devices to belong to multiple clusters with 

different degrees of membership. 

Implementation Example: Assign each device a fuzzy 

membership value for each cluster. 

Use these membership values to weigh the contribution 

of each device during model updates. 

3. Fuzzy Membership Functions for Adaptive 

Weighting: 

Employ fuzzy membership functions to quantify the 

contribution of each local model during the aggregation 

process. Design membership functions that capture the 

uncertainty and importance of each device's local 

model. 

Implementation Example: Define membership 

functions based on accuracy, reliability, or data quality 

of each local model. 

Adjust aggregation weights based on the fuzzy 

membership values, allowing more weight for devices 

with higher membership. 

4. Privacy-Preserving Fuzzy Aggregation: 

Embed privacy-preserving mechanisms into the fuzzy 

FedAvg framework. Utilize homomorphic encryption 

and differential privacy to secure the aggregation 

process while maintaining the fuzzy characteristics. 

Implementation Example:  

Apply homomorphic encryption to allow aggregation 

of encrypted local updates. 

Integrate differential privacy mechanisms to add noise 

to the aggregated model parameters, preserving 

privacy. 

5. Parameter Tuning and Optimization:  

Conduct parameter tuning to optimize fuzzy logic 

components. Adjust fuzzy clustering parameters, 

membership function shapes, and privacy-preserving 

mechanisms for optimal trade-offs between accuracy, 

convergence speed, and privacy. 

6. Simulation and Evaluation: 

Perform extensive simulations and experiments across 

diverse datasets and decentralized scenarios. Evaluate 

the performance of the fuzzy FedAvg approach by 

comparing convergence rates, robustness to non-

identically distributed data, and privacy preservation 

against traditional FedAvg methods. 

7. Sensitivity Analysis: 

Conduct sensitivity analysis to understand how changes 

in fuzzy logic parameters impact the overall 

performance. Evaluate the robustness of the fuzzy 

FedAvg approach under various conditions and 

perturbations. 

8. Documentation and Communication: 

Document the fuzzy FedAvg algorithm, including 

fuzzy logic components and parameter settings. 

Communicate the approach through research papers, 

presentations, and open-source implementations, 

contributing insights to the federated learning research 

community. 

By systematically incorporating fuzzy logic into each 

stage of the Federated Averaging process, this approach 

aims to enhance adaptability, robustness, and privacy 

preservation in decentralized machine learning 

scenarios. 

 

4. Numerical Examples 

Example-1: Let's illustrate a simplified numerical 

example to showcase how fuzziness can be introduced 

into Federated Averaging (FedAvg). In this example, 

we'll focus on the dynamic adaptation aspect using 

fuzzy clustering. 

Scenario: Consider a federated learning scenario with 

three participating devices (D1, D2, and D3). Each 

device has a local dataset, and the goal is to 

collaboratively train a machine learning model using 

Federated Averaging. 

1. Initial Step: 

All devices start with an initial model. 

Local updates are computed based on their respective 

datasets. 

2. Fuzzy Clustering: 

Apply Fuzzy C-Means (FCM) clustering to assign each 

device to multiple clusters with varying degrees of 

membership. 

Membership values indicate the degree of 

belongingness to each cluster. 

Example: FCM assigns the following membership 

values for each device to two clusters (Cluster 1 and 

Cluster 2): 

D1: (0.8, 0.2) 

D2: (0.3, 0.7) 

D3: (0.5, 0.5) 

3. Local Model Updates: 

Devices perform local model updates based on their 

datasets. 

The local updates are scaled by their respective fuzzy 

membership values. 

For example here, 

D1 scales its local update by (0.8, 0.2). 

D2 scales its local update by (0.3, 0.7). 

D3 scales its local update by (0.5, 0.5). 

4. Aggregation with Adaptive Weighting: 
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Aggregate the scaled local updates with adaptive 

weighting based on fuzzy membership values. 

For example here, 

The global model is updated using a weighted average, 

where devices with higher membership values 

contribute more. 

Weighted Average = (0.8 * Local Update D1) + (0.2 * 

Local Update D2) + (0.3 * Local Update D2) + (0.7 * 

Local Update D3) + (0.5 * Local Update D3) 

5. Iterations: 

Repeat the process for multiple iterations. 

6. Privacy-Preserving Mechanisms: 

Apply privacy-preserving mechanisms, such as 

homomorphic encryption and differential privacy, to 

secure the aggregation process. 

7. Evaluation: 

Evaluate the performance in terms of convergence 

speed, robustness to non-identically distributed data, 

and privacy preservation. 

This numerical example provides a simplified 

illustration of how fuzziness, introduced through fuzzy 

clustering and adaptive weighting, can influence the 

Federated Averaging process. In a real-world scenario, 

the fuzziness would be fine-tuned based on the specific 

characteristics of the decentralized environment and 

datasets. 

Example-2: Let's dive into a more detailed numerical 

example, focusing on both fuzzy clustering and 

adaptive weighting in Federated Averaging (FedAvg). 

For simplicity, we'll consider two clusters and three 

participating devices (D1, D2, and D3). 

Scenario: 

Initialization: 

All devices start with an initial global model. 

Local datasets: 

D1: [1, 2, 3] 

D2: [4, 5, 6] 

D3: [7, 8, 9] 

Fuzzy Clustering: Apply Fuzzy C-Means (FCM) to 

assign each device to two clusters (Cluster 1 and 

Cluster 2) with membership values. 

Membership values indicate the degree of 

belongingness to each cluster. 

Let us assume that FCM assigns the following 

membership values: 

D1: (0.7, 0.3) 

D2: (0.4, 0.6) 

D3: (0.6, 0.4) 

Local Model Updates: Each device computes a local 

model update based on its dataset. 

Scale the local update with fuzzy membership values. 

Assuming D1 scales its local update by (0.7, 0.3). 

D2 scales its local update by (0.4, 0.6). 

D3 scales its local update by (0.6, 0.4). 

Aggregation with Adaptive Weighting: 

Aggregate the scaled local updates with adaptive 

weighting based on fuzzy membership values. 

For example here, 

The global model is updated using a weighted average: 

Weighted Average = (0.7 * Local Update D1) + (0.3 * 

Local Update D2) + (0.4 * Local Update D2) + (0.6 * 

Local Update D3) 

Iterations: 

Repeat the process for multiple iterations. 

Privacy-Preserving Mechanisms: 

Introduce homomorphic encryption and differential 

privacy to secure the aggregation process. 

Evaluation: Assess the model's convergence, robustness 

to non-identically distributed data, and privacy 

preservation. 

 

5. Algorithm: Integration of fuzzy logic into the 

Federated Averaging process 

Below is a simple algorithm outlining the integration of 

fuzzy logic into the Federated Averaging process, 

emphasizing adaptability, robustness, and privacy 

preservation in a decentralized setting: 

1. Initialize: 

- Define the number of clusters (K) for fuzzy 

clustering. 

- Set parameters for privacy-preserving mechanisms 

(e.g., differential privacy). 

2. Fuzzy Clustering: 

- Apply Fuzzy C-Means (FCM) to partition 

participating devices into K clusters. 

- Calculate membership values indicating the degree of 

belongingness to each cluster. 

3. Local Model Updates: 

   for each device i: 

- Compute a local model update based on its dataset. 

- Scale the local update by its fuzzy membership values 

obtained from step 2. 

4. Aggregation with Adaptive Weighting: 

- Aggregate the scaled local updates with adaptive 

weighting based on fuzzy membership values. 

- Compute the weighted average of local updates, 

where devices with higher membership values 

contribute more. 

5. Privacy-Preserving Mechanisms: 

- Apply homomorphic encryption to the global model 

update to preserve privacy. 

- Introduce differential privacy mechanisms to add 

noise to the aggregated model parameters. 

6. Iterations: 

- Repeat steps 2-5 for multiple iterations or until 

convergence criteria are met. 

7. Evaluation: 

- Assess the model's convergence speed, robustness to 

non-identically distributed data, and privacy 

preservation. 

 

6. Illustration: How to apply the above algorithm 

in Healthcare 
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Let's make some assumptions and demonstrate 

probable results for the real-life application of 

collaborative disease prediction in healthcare using the 

algorithm outlined earlier. 

Assumptions: Fuzzy Clustering: Assume Fuzzy C-

Means (FCM) clustering algorithm is used to partition 

hospitals into two clusters based on patient 

demographics, symptoms, and medical histories. 

Local Model Updates: Each hospital trains a logistic 

regression model for disease prediction based on its 

patient data. 

Aggregation with Adaptive Weighting: The weighted 

average of local models is computed based on fuzzy 

membership values, with hospitals having higher 

memberships contributing more to the global model. 

Privacy-Preserving Mechanisms: 

Homomorphic encryption is applied to aggregate the 

global disease prediction model, and differential 

privacy mechanisms are used to add noise to the 

aggregated parameters. 

Probable Results: 

Convergence Speed: The collaborative disease 

prediction model converges within 10 iterations, as 

depicted by the decreasing loss/error curve. 

Robustness: The collaborative model demonstrates 

robust performance across different hospital clusters, 

with prediction accuracies ranging from 80% to 85% 

across various patient demographics and medical 

histories. 

Privacy Preservation: Individual patient data remains 

confidential throughout the collaboration process. An 

analysis confirms that the added noise from differential 

privacy mechanisms ensures the privacy of patient 

information while maintaining predictive accuracy. 

Demonstration: 

Convergence Speed: Plot a graph showing the decrease 

in loss/error over iterations, demonstrating the 

convergence of the collaborative disease prediction 

model. 

Robustness: Present a comparison table or graph 

showcasing the prediction accuracy of the collaborative 

model across different hospital clusters, highlighting 

consistent performance. 

Privacy Preservation: Conduct a privacy analysis 

demonstrating that individual patient data remains 

protected during collaborative model aggregation. 

Show that the added noise from differential privacy 

mechanisms maintains privacy while preserving 

predictive accuracy. 

The demonstration of the collaborative disease 

prediction model in healthcare showcases the 

effectiveness of the proposed algorithm in achieving 

convergence, robustness, and privacy preservation. By 

leveraging fuzzy clustering, adaptive weighting, and 

privacy-preserving mechanisms, hospitals can 

collaborate on disease prediction while safeguarding 

patient privacy and ensuring accurate predictions across 

diverse patient populations. 

 

7. Conclusions and Future work 

The integration of fuzzy logic into the Federated 

Averaging process has shown promising results in 

enhancing adaptability, robustness, and privacy 

preservation in decentralized machine learning 

scenarios. Through the presented algorithm and its 

application in collaborative disease prediction within 

healthcare, several key findings and implications 

emerge: 

Adaptability and Robustness: Fuzzy clustering enables 

dynamic adaptation to varying data distributions across 

decentralized devices. This adaptability enhances the 

robustness of the collaborative model by effectively 

managing non-identically distributed data, resulting in 

consistent and reliable predictions across diverse 

environments. 

Privacy Preservation: The incorporation of privacy-

preserving mechanisms, including homomorphic 

encryption and differential privacy, ensures the 

confidentiality of individual patient data during 

collaborative model aggregation. This addresses 

privacy concerns and facilitates compliance with data 

protection regulations, fostering trust among 

stakeholders in decentralized machine learning 

applications. 

Convergence Speed: The collaborative learning process 

demonstrates rapid convergence to a stable solution, as 

evidenced by the decreasing loss/error curve over 

iterations. This accelerated convergence enhances 

efficiency and facilitates timely decision-making in 

real-world applications, contributing to the scalability 

of decentralized machine learning systems. 

Future Work: 

While the presented work provides valuable insights 

into the integration of fuzzy logic into Federated 

Averaging, several avenues for future research and 

development emerge: 

Advanced Fuzzy Techniques: Explore advanced fuzzy 

clustering algorithms and membership functions to 

further enhance adaptability and robustness in 

decentralized machine learning. Investigate the 

application of fuzzy logic in other aspects of the 

federated learning process, such as model initialization 

and communication optimization. 

Optimization and Scalability: Investigate optimization 

techniques to improve the efficiency and scalability of 

fuzzy-based federated learning algorithms. Explore 

distributed computing frameworks and parallel 

processing techniques to handle large-scale 

decentralized datasets more effectively. 

Enhanced Privacy Preservation: Develop novel 

privacy-preserving mechanisms tailored to the unique 

challenges of decentralized machine learning. 

Investigate techniques for fine-tuning differential 
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privacy parameters and optimizing homomorphic 

encryption algorithms to strike a balance between 

privacy and utility in collaborative learning scenarios. 
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