48,957 research outputs found

    Event-triggered consensus control for discrete-time stochastic multi-agent systems: The input-to-state stability in probability

    Get PDF
    This paper is concerned with the event-triggered consensus control problem for a class of discrete-time stochastic multi-agent systems with state-dependent noises. A novel definition of consensus in probability is proposed to better describe the dynamics of the consensus process of the addressed stochastic multiagent systems. The measurement output available for the controller is not only from the individual agent but also from its neighboring ones according to the given topology. An event-triggered mechanism is adopted with hope to reduce the communication burden, where the control input on each agent is updated only when a certain triggering condition is violated. The purpose of the problem under consideration is to design both the output feedback controller and the threshold of the triggering condition such that the closed-loop system achieves the desired consensus in probability. First of all, a theoretical framework is established for analyzing the so-called input-to-state stability in probability (ISSiP) for general discretetime nonlinear stochastic systems. Within such a theoretical framework, some sufficient conditions on event-triggered control protocol are derived under which the consensus in probability is reached. Furthermore, both the controller parameter and the triggering threshold are obtained in terms of the solution to certain matrix inequalities involving the topology information and the desired consensus probability. Finally, a simulation example is utilized to illustrate the usefulness of the proposed control protocol.Royal Society of the UK, the National Natural Science Foundation of China under Grants 61329301, 61203139 and 61473076, the Hujiang Foundation of China under Grants C14002 and D15009, the Shanghai Rising- Star Program of China under Grant 13QA1400100, the ShuGuang project of Shanghai Municipal Education Commission and Shanghai Education Development Foundation under Grant 13SG34, the Fundamental Research Funds for the Central Universities, DHU Distinguished Young Professor Program, and the Alexander von Humboldt Foundation of German

    Time-and event-driven communication process for networked control systems: A survey

    Get PDF
    Copyright © 2014 Lei Zou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In recent years, theoretical and practical research topics on networked control systems (NCSs) have gained an increasing interest from many researchers in a variety of disciplines owing to the extensive applications of NCSs in practice. In particular, an urgent need has arisen to understand the effects of communication processes on system performances. Sampling and protocol are two fundamental aspects of a communication process which have attracted a great deal of research attention. Most research focus has been on the analysis and control of dynamical behaviors under certain sampling procedures and communication protocols. In this paper, we aim to survey some recent advances on the analysis and synthesis issues of NCSs with different sampling procedures (time-and event-driven sampling) and protocols (static and dynamic protocols). First, these sampling procedures and protocols are introduced in detail according to their engineering backgrounds as well as dynamic natures. Then, the developments of the stabilization, control, and filtering problems are systematically reviewed and discussed in great detail. Finally, we conclude the paper by outlining future research challenges for analysis and synthesis problems of NCSs with different communication processes.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Event-based H∞ consensus control of multi-agent systems with relative output feedback: The finite-horizon case

    Get PDF
    In this technical note, the H∞ consensus control problem is investigated over a finite horizon for general discrete time-varying multi-agent systems subject to energy-bounded external disturbances. A decentralized estimation-based output feedback control protocol is put forward via the relative output measurements. A novel event-based mechanism is proposed for each intelligent agent to utilize the available information in order to decide when to broadcast messages and update control input. The aim of the problem addressed is to co-design the time-varying controller and estimator parameters such that the controlled multi-agent systems achieve consensus with a disturbance attenuation level γ over a finite horizon [0,T]. A constrained recursive Riccati difference equation approach is developed to derive the sufficient conditions under which the H∞ consensus performance is guaranteed in the framework of event-based scheme. Furthermore, the desired controller and estimator parameters can be iteratively computed by resorting to the Moore-Penrose pseudo inverse. Finally, the effectiveness of the developed event-based H∞ consensus control strategy is demonstrated in the numerical simulation
    • …
    corecore