67 research outputs found

    Partial Correctness of a Power Algorithm

    Get PDF
    This work continues a formal verification of algorithms written in terms of simple-named complex-valued nominative data [6],[8],[15],[11],[12],[13]. In this paper we present a formalization in the Mizar system [3],[1] of the partial correctness of the algorithm: i := val.1 j := val.2 b := val.3 n := val.4 s := val.5 while (i n) i := i + j s := s * b return s computing the natural n power of given complex number b, where variables i, b, n, s are located as values of a V-valued Function, loc, as: loc/.1 = i, loc/.3 = b, loc/.4 = n and loc/.5 = s, and the constant 1 is located in the location loc/.2 = j (set V represents simple names of considered nominative data [17]).The validity of the algorithm is presented in terms of semantic Floyd-Hoare triples over such data [9]. Proofs of the correctness are based on an inference system for an extended Floyd-Hoare logic [2],[4] with partial pre- and post-conditions [14],[16],[7],[5].Institute of Informatics, University of BiaƂystok, PolandGrzegorz Bancerek, CzesƂaw ByliƄski, Adam Grabowski, Artur KorniƂowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.R.W. Floyd. Assigning meanings to programs. Mathematical aspects of computer science, 19(19–32), 1967.Adam Grabowski, Artur KorniƂowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191–198, 2015. doi:10.1007/s10817-015-9345-1.C.A.R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10): 576–580, 1969.Ievgen Ivanov and Mykola Nikitchenko. On the sequence rule for the Floyd-Hoare logic with partial pre- and post-conditions. In Proceedings of the 14th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer. Volume II: Workshops, Kyiv, Ukraine, May 14–17, 2018, volume 2104 of CEUR Workshop Proceedings, pages 716–724, 2018.Ievgen Ivanov, Mykola Nikitchenko, Andrii Kryvolap, and Artur KorniƂowicz. Simple-named complex-valued nominative data – definition and basic operations. Formalized Mathematics, 25(3):205–216, 2017. doi:10.1515/forma-2017-0020.Ievgen Ivanov, Artur KorniƂowicz, and Mykola Nikitchenko. Implementation of the composition-nominative approach to program formalization in Mizar. The Computer Science Journal of Moldova, 26(1):59–76, 2018.Ievgen Ivanov, Artur KorniƂowicz, and Mykola Nikitchenko. On an algorithmic algebra over simple-named complex-valued nominative data. Formalized Mathematics, 26(2):149–158, 2018. doi:10.2478/forma-2018-0012.Ievgen Ivanov, Artur KorniƂowicz, and Mykola Nikitchenko. An inference system of an extension of Floyd-Hoare logic for partial predicates. Formalized Mathematics, 26(2): 159–164, 2018. doi:10.2478/forma-2018-0013.Ievgen Ivanov, Artur KorniƂowicz, and Mykola Nikitchenko. Partial correctness of GCD algorithm. Formalized Mathematics, 26(2):165–173, 2018. doi:10.2478/forma-2018-0014.Ievgen Ivanov, Artur KorniƂowicz, and Mykola Nikitchenko. On algebras of algorithms and specifications over uninterpreted data. Formalized Mathematics, 26(2):141–147, 2018. doi:10.2478/forma-2018-0011.Artur Kornilowicz, Andrii Kryvolap, Mykola Nikitchenko, and Ievgen Ivanov. Formalization of the algebra of nominative data in Mizar. In Maria Ganzha, Leszek A. Maciaszek, and Marcin Paprzycki, editors, Proceedings of the 2017 Federated Conference on Computer Science and Information Systems, FedCSIS 2017, Prague, Czech Republic, September 3–6, 2017., pages 237–244, 2017. ISBN 978-83-946253-7-5. doi:10.15439/2017F301.Artur Kornilowicz, Andrii Kryvolap, Mykola Nikitchenko, and Ievgen Ivanov. Formalization of the nominative algorithmic algebra in Mizar. In Leszek Borzemski, Jerzy ƚwiątek, and Zofia Wilimowska, editors, Information Systems Architecture and Technology: Proceedings of 38th International Conference on Information Systems Architecture and Technology – ISAT 2017 – Part II, Szklarska Poręba, Poland, September 17–19, 2017, volume 656 of Advances in Intelligent Systems and Computing, pages 176–186. Springer, 2017. ISBN 978-3-319-67228-1. doi:10.1007/978-3-319-67229-8_16.Artur KorniƂowicz, Andrii Kryvolap, Mykola Nikitchenko, and Ievgen Ivanov. An approach to formalization of an extension of Floyd-Hoare logic. In Vadim Ermolayev, Nick Bassiliades, Hans-Georg Fill, Vitaliy Yakovyna, Heinrich C. Mayr, Vyacheslav Kharchenko, Vladimir Peschanenko, Mariya Shyshkina, Mykola Nikitchenko, and Aleksander Spivakovsky, editors, Proceedings of the 13th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer, Kyiv, Ukraine, May 15–18, 2017, volume 1844 of CEUR Workshop Proceedings, pages 504–523. CEUR-WS.org, 2017.Artur KorniƂowicz, Ievgen Ivanov, and Mykola Nikitchenko. Kleene algebra of partial predicates. Formalized Mathematics, 26(1):11–20, 2018. doi:10.2478/forma-2018-0002.Andrii Kryvolap, Mykola Nikitchenko, and Wolfgang Schreiner. Extending Floyd-Hoare logic for partial pre- and postconditions. In Vadim Ermolayev, Heinrich C. Mayr, Mykola Nikitchenko, Aleksander Spivakovsky, and Grygoriy Zholtkevych, editors, Information and Communication Technologies in Education, Research, and Industrial Applications: 9th International Conference, ICTERI 2013, Kherson, Ukraine, June 19–22, 2013, Revised Selected Papers, pages 355–378. Springer International Publishing, 2013. ISBN 978-3-319-03998-5. doi:10.1007/978-3-319-03998-5_18.Volodymyr G. Skobelev, Mykola Nikitchenko, and Ievgen Ivanov. On algebraic properties of nominative data and functions. In Vadim Ermolayev, Heinrich C. Mayr, Mykola Nikitchenko, Aleksander Spivakovsky, and Grygoriy Zholtkevych, editors, Information and Communication Technologies in Education, Research, and Industrial Applications – 10th International Conference, ICTERI 2014, Kherson, Ukraine, June 9–12, 2014, Revised Selected Papers, volume 469 of Communications in Computer and Information Science, pages 117–138. Springer, 2014. ISBN 978-3-319-13205-1. doi:10.1007/978-3-319-13206-8_6.27218919

    On an Algorithmic Algebra over Simple-Named Complex-Valued Nominative Data

    Get PDF
    This paper continues formalization in the Mizar system [2, 1] of basic notions of the composition-nominative approach to program semantics [14] which was started in [8, 12, 10].The composition-nominative approach studies mathematical models of computer programs and data on various levels of abstraction and generality and provides tools for reasoning about their properties. In particular, data in computer systems are modeled as nominative data [15]. Besides formalization of semantics of programs, certain elements of the composition-nominative approach were applied to abstract systems in a mathematical systems theory [4, 6, 7, 5, 3].In the paper we give a formal definition of the notions of a binominative function over given sets of names and values (i.e. a partial function which maps simple-named complex-valued nominative data to such data) and a nominative predicate (a partial predicate on simple-named complex-valued nominative data). The sets of such binominative functions and nominative predicates form the carrier of the generalized Glushkov algorithmic algebra for simple-named complex-valued nominative data [15]. This algebra can be used to formalize algorithms which operate on various data structures (such as multidimensional arrays, lists, etc.) and reason about their properties.In particular, we formalize the operations of this algebra which require a specification of a data domain and which include the existential quantifier, the assignment composition, the composition of superposition into a predicate, the composition of superposition into a binominative function, the name checking predicate. The details on formalization of nominative data and the operations of the algorithmic algebra over them are described in [11, 13, 9].Ievgen Ivanov - Taras Shevchenko National University, Kyiv, UkraineArtur KorniƂowicz - Institute of Informatics, University of BiaƂystok, PolandMykola Nikitchenko - Taras Shevchenko National University, Kyiv, UkraineGrzegorz Bancerek, CzesƂaw ByliƄski, Adam Grabowski, Artur KorniƂowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.Adam Grabowski, Artur KorniƂowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191–198, 2015. doi:10.1007/s10817-015-9345-1.Ievgen Ivanov. On the underapproximation of reach sets of abstract continuous-time systems. In Erika Ábrahám and Sergiy Bogomolov, editors, Proceedings 3rd International Workshop on Symbolic and Numerical Methods for Reachability Analysis, SNR@ETAPS 2017, Uppsala, Sweden, 22nd April 2017, volume 247 of EPTCS, pages 46–51, 2017. doi:10.4204/EPTCS.247.4.Ievgen Ivanov. On representations of abstract systems with partial inputs and outputs. In T. V. Gopal, Manindra Agrawal, Angsheng Li, and S. Barry Cooper, editors, Theory and Applications of Models of Computation – 11th Annual Conference, TAMC 2014, Chennai, India, April 11–13, 2014. Proceedings, volume 8402 of Lecture Notes in Computer Science, pages 104–123. Springer, 2014. ISBN 978-3-319-06088-0. doi:10.1007/978-3-319-06089-7_8.Ievgen Ivanov. On local characterization of global timed bisimulation for abstract continuous-time systems. In Ichiro Hasuo, editor, Coalgebraic Methods in Computer Science – 13th IFIP WG 1.3 International Workshop, CMCS 2016, Colocated with ETAPS 2016, Eindhoven, The Netherlands, April 2–3, 2016, Revised Selected Papers, volume 9608 of Lecture Notes in Computer Science, pages 216–234. Springer, 2016. ISBN 978-3-319-40369-4. doi:10.1007/978-3-319-40370-0_13.Ievgen Ivanov, Mykola Nikitchenko, and Uri Abraham. On a decidable formal theory for abstract continuous-time dynamical systems. In Vadim Ermolayev, Heinrich C. Mayr, Mykola Nikitchenko, Aleksander Spivakovsky, and Grygoriy Zholtkevych, editors, Information and Communication Technologies in Education, Research, and Industrial Applications: 10th International Conference, ICTERI 2014, Kherson, Ukraine, June 9–12, 2014, Revised Selected Papers, pages 78–99. Springer International Publishing, 2014. ISBN 978-3-319-13206-8. doi:10.1007/978-3-319-13206-8_4.Ievgen Ivanov, Mykola Nikitchenko, and Uri Abraham. Event-based proof of the mutual exclusion property of Peterson’s algorithm. Formalized Mathematics, 23(4):325–331, 2015. doi:10.1515/forma-2015-0026.Ievgen Ivanov, Mykola Nikitchenko, Andrii Kryvolap, and Artur KorniƂowicz. Simple-named complex-valued nominative data – definition and basic operations. Formalized Mathematics, 25(3):205–216, 2017. doi:10.1515/forma-2017-0020.Ievgen Ivanov, Artur KorniƂowicz, and Mykola Nikitchenko. Implementation of the composition-nominative approach to program formalization in Mizar. The Computer Science Journal of Moldova, 26(1):59–76, 2018.Ievgen Ivanov, Artur KorniƂowicz, and Mykola Nikitchenko. On algebras of algorithms and specifications over uninterpreted data. Formalized Mathematics, 26(2):141–147, 2018. doi:10.2478/forma-2018-0011.Artur Kornilowicz, Andrii Kryvolap, Mykola Nikitchenko, and Ievgen Ivanov. Formalization of the algebra of nominative data in Mizar. In Maria Ganzha, Leszek A. Maciaszek, and Marcin Paprzycki, editors, Proceedings of the 2017 Federated Conference on Computer Science and Information Systems, FedCSIS 2017, Prague, Czech Republic, September 3–6, 2017., pages 237–244, 2017. ISBN 978-83-946253-7-5. doi:10.15439/2017F301.Artur KorniƂowicz, Ievgen Ivanov, and Mykola Nikitchenko. Kleene algebra of partial predicates. Formalized Mathematics, 26(1):11–20, 2018. doi:10.2478/forma-2018-0002.Artur KorniƂowicz, Andrii Kryvolap, Mykola Nikitchenko, and Ievgen Ivanov. Formalization of the nominative algorithmic algebra in Mizar. In Jerzy ƚwiątek, Leszek Borzemski, and Zofia Wilimowska, editors, Information Systems Architecture and Technology: Proceedings of 38th International Conference on Information Systems Architecture and Technology – ISAT 2017: Part II, pages 176–186. Springer International Publishing, 2018. ISBN 978-3-319-67229-8. doi:10.1007/978-3-319-67229-8_16.Nikolaj S. Nikitchenko. A composition nominative approach to program semantics. Technical Report IT-TR 1998-020, Department of Information Technology, Technical University of Denmark, 1998.Volodymyr G. Skobelev, Mykola Nikitchenko, and Ievgen Ivanov. On algebraic properties of nominative data and functions. In Vadim Ermolayev, Heinrich C. Mayr, Mykola Nikitchenko, Aleksander Spivakovsky, and Grygoriy Zholtkevych, editors, Information and Communication Technologies in Education, Research, and Industrial Applications – 10th International Conference, ICTERI 2014, Kherson, Ukraine, June 9–12, 2014, Revised Selected Papers, volume 469 of Communications in Computer and Information Science, pages 117–138. Springer, 2014. ISBN 978-3-319-13205-1. doi:10.1007/978-3-319-13206-8_6.26214915

    Partial Correctness of a Fibonacci Algorithm

    Get PDF
    In this paper we introduce some notions to facilitate formulating and proving properties of iterative algorithms encoded in nominative data language [19] in the Mizar system [3], [1]. It is tested on verification of the partial correctness of an algorithm computing n-th Fibonacci number: i := 0 s := 0 b := 1 c := 0 while (i n)   c := s   s := b   b := c + s   i := i + 1 return s This paper continues verification of algorithms [10], [13], [12] written in terms of simple-named complex-valued nominative data [6], [8], [17], [11], [14], [15]. The validity of the algorithm is presented in terms of semantic Floyd-Hoare triples over such data [9]. Proofs of the correctness are based on an inference system for an extended Floyd-Hoare logic [2], [4] with partial pre- and post-conditions [16], [18], [7], [5].Institute of Informatics, University of BiaƂystok, PolandGrzegorz Bancerek, CzesƂaw ByliƄski, Adam Grabowski, Artur KorniƂowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.R.W. Floyd. Assigning meanings to programs. Mathematical aspects of computer science, 19(19–32), 1967.Adam Grabowski, Artur KorniƂowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191–198, 2015. doi:10.1007/s10817-015-9345-1.C.A.R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10): 576–580, 1969.Ievgen Ivanov and Mykola Nikitchenko. On the sequence rule for the Floyd-Hoare logic with partial pre- and post-conditions. In Proceedings of the 14th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer. Volume II: Workshops, Kyiv, Ukraine, May 14–17, 2018, volume 2104 of CEUR Workshop Proceedings, pages 716–724, 2018.Ievgen Ivanov, Mykola Nikitchenko, Andrii Kryvolap, and Artur KorniƂowicz. Simple-named complex-valued nominative data – definition and basic operations. Formalized Mathematics, 25(3):205–216, 2017. doi:10.1515/forma-2017-0020.Ievgen Ivanov, Artur KorniƂowicz, and Mykola Nikitchenko. Implementation of the composition-nominative approach to program formalization in Mizar. The Computer Science Journal of Moldova, 26(1):59–76, 2018.Ievgen Ivanov, Artur KorniƂowicz, and Mykola Nikitchenko. On an algorithmic algebra over simple-named complex-valued nominative data. Formalized Mathematics, 26(2):149–158, 2018. doi:10.2478/forma-2018-0012.Ievgen Ivanov, Artur KorniƂowicz, and Mykola Nikitchenko. An inference system of an extension of Floyd-Hoare logic for partial predicates. Formalized Mathematics, 26(2): 159–164, 2018. doi:10.2478/forma-2018-0013.Ievgen Ivanov, Artur KorniƂowicz, and Mykola Nikitchenko. Partial correctness of GCD algorithm. Formalized Mathematics, 26(2):165–173, 2018. doi:10.2478/forma-2018-0014.Ievgen Ivanov, Artur KorniƂowicz, and Mykola Nikitchenko. On algebras of algorithms and specifications over uninterpreted data. Formalized Mathematics, 26(2):141–147, 2018. doi:10.2478/forma-2018-0011.Adrian Jaszczak. Partial correctness of a power algorithm. Formalized Mathematics, 27 (2):189–195, 2019. doi:10.2478/forma-2019-0018.Adrian Jaszczak and Artur KorniƂowicz. Partial correctness of a factorial algorithm. Formalized Mathematics, 27(2):181–187, 2019. doi:10.2478/forma-2019-0017.Artur Kornilowicz, Andrii Kryvolap, Mykola Nikitchenko, and Ievgen Ivanov. Formalization of the algebra of nominative data in Mizar. In Maria Ganzha, Leszek A. Maciaszek, and Marcin Paprzycki, editors, Proceedings of the 2017 Federated Conference on Computer Science and Information Systems, FedCSIS 2017, Prague, Czech Republic, September 3–6, 2017., pages 237–244, 2017. ISBN 978-83-946253-7-5. doi:10.15439/2017F301.Artur Kornilowicz, Andrii Kryvolap, Mykola Nikitchenko, and Ievgen Ivanov. Formalization of the nominative algorithmic algebra in Mizar. In Leszek Borzemski, Jerzy ƚwiątek, and Zofia Wilimowska, editors, Information Systems Architecture and Technology: Proceedings of 38th International Conference on Information Systems Architecture and Technology – ISAT 2017 – Part II, Szklarska Poręba, Poland, September 17–19, 2017, volume 656 of Advances in Intelligent Systems and Computing, pages 176–186. Springer, 2017. ISBN 978-3-319-67228-1. doi:10.1007/978-3-319-67229-8_16.Artur KorniƂowicz, Andrii Kryvolap, Mykola Nikitchenko, and Ievgen Ivanov. An approach to formalization of an extension of Floyd-Hoare logic. In Vadim Ermolayev, Nick Bassiliades, Hans-Georg Fill, Vitaliy Yakovyna, Heinrich C. Mayr, Vyacheslav Kharchenko, Vladimir Peschanenko, Mariya Shyshkina, Mykola Nikitchenko, and Aleksander Spivakovsky, editors, Proceedings of the 13th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer, Kyiv, Ukraine, May 15–18, 2017, volume 1844 of CEUR Workshop Proceedings, pages 504–523. CEUR-WS.org, 2017.Artur KorniƂowicz, Ievgen Ivanov, and Mykola Nikitchenko. Kleene algebra of partial predicates. Formalized Mathematics, 26(1):11–20, 2018. doi:10.2478/forma-2018-0002.Andrii Kryvolap, Mykola Nikitchenko, and Wolfgang Schreiner. Extending Floyd-Hoare logic for partial pre- and postconditions. In Vadim Ermolayev, Heinrich C. Mayr, Mykola Nikitchenko, Aleksander Spivakovsky, and Grygoriy Zholtkevych, editors, Information and Communication Technologies in Education, Research, and Industrial Applications: 9th International Conference, ICTERI 2013, Kherson, Ukraine, June 19–22, 2013, Revised Selected Papers, pages 355–378. Springer International Publishing, 2013. ISBN 978-3-319-03998-5. doi:10.1007/978-3-319-03998-5_18.Volodymyr G. Skobelev, Mykola Nikitchenko, and Ievgen Ivanov. On algebraic properties of nominative data and functions. In Vadim Ermolayev, Heinrich C. Mayr, Mykola Nikitchenko, Aleksander Spivakovsky, and Grygoriy Zholtkevych, editors, Information and Communication Technologies in Education, Research, and Industrial Applications – 10th International Conference, ICTERI 2014, Kherson, Ukraine, June 9–12, 2014, Revised Selected Papers, volume 469 of Communications in Computer and Information Science, pages 117–138. Springer, 2014. ISBN 978-3-319-13205-1. doi:10.1007/978-3-319-13206-8_6.28218719

    General Theory and Tools for Proving Algorithms in Nominative Data Systems

    Get PDF
    In this paper we introduce some new definitions for sequences of operations and extract general theorems about properties of iterative algorithms encoded in nominative data language [20] in the Mizar system [3], [1] in order to simplify the process of proving algorithms in the future. This paper continues verification of algorithms [10], [13], [12], [14] written in terms of simple-named complex-valued nominative data [6], [8], [18], [11], [15], [16]. The validity of the algorithm is presented in terms of semantic Floyd-Hoare triples over such data [9]. Proofs of the correctness are based on an inference system for an extended Floyd-Hoare logic [2], [4] with partial pre- and postconditions [17], [19], [7], [5].Institute of Informatics, University of BiaƂystok, PolandGrzegorz Bancerek, CzesƂaw ByliƄski, Adam Grabowski, Artur KorniƂowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.R.W. Floyd. Assigning meanings to programs. Mathematical Aspects of Computer Science, 19(19–32), 1967.Adam Grabowski, Artur KorniƂowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191–198, 2015. doi:10.1007/s10817-015-9345-1.C.A.R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10): 576–580, 1969.Ievgen Ivanov and Mykola Nikitchenko. On the sequence rule for the Floyd-Hoare logic with partial pre- and post-conditions. In Proceedings of the 14th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer. Volume II: Workshops, Kyiv, Ukraine, May 14–17, 2018, volume 2104 of CEUR Workshop Proceedings, pages 716–724, 2018.Ievgen Ivanov, Mykola Nikitchenko, Andrii Kryvolap, and Artur KorniƂowicz. Simple-named complex-valued nominative data – definition and basic operations. Formalized Mathematics, 25(3):205–216, 2017. doi:10.1515/forma-2017-0020.Ievgen Ivanov, Artur KorniƂowicz, and Mykola Nikitchenko. Implementation of the composition-nominative approach to program formalization in Mizar. The Computer Science Journal of Moldova, 26(1):59–76, 2018.Ievgen Ivanov, Artur KorniƂowicz, and Mykola Nikitchenko. On an algorithmic algebra over simple-named complex-valued nominative data. Formalized Mathematics, 26(2):149–158, 2018. doi:10.2478/forma-2018-0012.Ievgen Ivanov, Artur KorniƂowicz, and Mykola Nikitchenko. An inference system of an extension of Floyd-Hoare logic for partial predicates. Formalized Mathematics, 26(2): 159–164, 2018. doi:10.2478/forma-2018-0013.Ievgen Ivanov, Artur KorniƂowicz, and Mykola Nikitchenko. Partial correctness of GCD algorithm. Formalized Mathematics, 26(2):165–173, 2018. doi:10.2478/forma-2018-0014.Ievgen Ivanov, Artur KorniƂowicz, and Mykola Nikitchenko. On algebras of algorithms and specifications over uninterpreted data. Formalized Mathematics, 26(2):141–147, 2018. doi:10.2478/forma-2018-0011.Adrian Jaszczak. Partial correctness of a power algorithm. Formalized Mathematics, 27 (2):189–195, 2019. doi:10.2478/forma-2019-0018.Adrian Jaszczak and Artur KorniƂowicz. Partial correctness of a factorial algorithm. Formalized Mathematics, 27(2):181–187, 2019. doi:10.2478/forma-2019-0017.Artur KorniƂowicz. Partial correctness of a Fibonacci algorithm. Formalized Mathematics, 28(2):187–196, 2020. doi:10.2478/forma-2020-0016.Artur KorniƂowicz, Andrii Kryvolap, Mykola Nikitchenko, and Ievgen Ivanov. Formalization of the algebra of nominative data in Mizar. In Maria Ganzha, Leszek A. Maciaszek, and Marcin Paprzycki, editors, Proceedings of the 2017 Federated Conference on Computer Science and Information Systems, FedCSIS 2017, Prague, Czech Republic, September 3–6, 2017., pages 237–244, 2017. ISBN 978-83-946253-7-5. doi:10.15439/2017F301.Artur KorniƂowicz, Andrii Kryvolap, Mykola Nikitchenko, and Ievgen Ivanov. Formalization of the nominative algorithmic algebra in Mizar. In Leszek Borzemski, Jerzy ƚwiątek, and Zofia Wilimowska, editors, Information Systems Architecture and Technology: Proceedings of 38th International Conference on Information Systems Architecture and Technology – ISAT 2017 – Part II, Szklarska Poręba, Poland, September 17–19, 2017, volume 656 of Advances in Intelligent Systems and Computing, pages 176–186. Springer, 2017. ISBN 978-3-319-67228-1. doi:10.1007/978-3-319-67229-8_16.Artur KorniƂowicz, Andrii Kryvolap, Mykola Nikitchenko, and Ievgen Ivanov. An approach to formalization of an extension of Floyd-Hoare logic. In Vadim Ermolayev, Nick Bassiliades, Hans-Georg Fill, Vitaliy Yakovyna, Heinrich C. Mayr, Vyacheslav Kharchenko, Vladimir Peschanenko, Mariya Shyshkina, Mykola Nikitchenko, and Aleksander Spivakovsky, editors, Proceedings of the 13th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer, Kyiv, Ukraine, May 15–18, 2017, volume 1844 of CEUR Workshop Proceedings, pages 504–523. CEUR-WS.org, 2017.Artur KorniƂowicz, Ievgen Ivanov, and Mykola Nikitchenko. Kleene algebra of partial predicates. Formalized Mathematics, 26(1):11–20, 2018. doi:10.2478/forma-2018-0002.Andrii Kryvolap, Mykola Nikitchenko, and Wolfgang Schreiner. Extending Floyd-Hoare logic for partial pre- and postconditions. In Vadim Ermolayev, Heinrich C. Mayr, Mykola Nikitchenko, Aleksander Spivakovsky, and Grygoriy Zholtkevych, editors, Information and Communication Technologies in Education, Research, and Industrial Applications: 9th International Conference, ICTERI 2013, Kherson, Ukraine, June 19–22, 2013, Revised Selected Papers, pages 355–378. Springer International Publishing, 2013. ISBN 978-3-319-03998-5. doi:10.1007/978-3-319-03998-5_18.Volodymyr G. Skobelev, Mykola Nikitchenko, and Ievgen Ivanov. On algebraic properties of nominative data and functions. In Vadim Ermolayev, Heinrich C. Mayr, Mykola Nikitchenko, Aleksander Spivakovsky, and Grygoriy Zholtkevych, editors, Information and Communication Technologies in Education, Research, and Industrial Applications – 10th International Conference, ICTERI 2014, Kherson, Ukraine, June 9–12, 2014, Revised Selected Papers, volume 469 of Communications in Computer and Information Science, pages 117–138. Springer, 2014. ISBN 978-3-319-13205-1. doi:10.1007/978-3-319-13206-8_6.28426927

    Partial Correctness of an Algorithm Computing Lucas Sequences

    Get PDF
    In this paper we define some properties about finite sequences and verify the partial correctness of an algorithm computing n-th element of Lucas sequence [23], [20] with given P and Q coefficients as well as two first elements (x and y). The algorithm is encoded in nominative data language [22] in the Mizar system [3], [1]. i := 0 s := x b := y c := x while (i n) c := s s := b ps := p*s qc := q*c b := ps − qc i := i + j return s This paper continues verification of algorithms [10], [14], [12], [15], [13] written in terms of simple-named complex-valued nominative data [6], [8], [19], [11], [16], [17]. The validity of the algorithm is presented in terms of semantic Floyd-Hoare triples over such data [9]. Proofs of the correctness are based on an inference system for an extended Floyd-Hoare logic [2], [4] with partial pre- and post-conditions [18], [21], [7], [5].Institute of Informatics, University of BiaƂystok, PolandGrzegorz Bancerek, CzesƂaw ByliƄski, Adam Grabowski, Artur KorniƂowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.R.W. Floyd. Assigning meanings to programs. Mathematical Aspects of Computer Science, 19(19–32), 1967.Adam Grabowski, Artur KorniƂowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191–198, 2015. doi:10.1007/s10817-015-9345-1.C.A.R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10): 576–580, 1969.Ievgen Ivanov and Mykola Nikitchenko. On the sequence rule for the Floyd-Hoare logic with partial pre- and post-conditions. In Proceedings of the 14th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer. Volume II: Workshops, Kyiv, Ukraine, May 14–17, 2018, volume 2104 of CEUR Workshop Proceedings, pages 716–724, 2018.Ievgen Ivanov, Mykola Nikitchenko, Andrii Kryvolap, and Artur KorniƂowicz. Simple-named complex-valued nominative data – definition and basic operations. Formalized Mathematics, 25(3):205–216, 2017. doi:10.1515/forma-2017-0020.Ievgen Ivanov, Artur KorniƂowicz, and Mykola Nikitchenko. Implementation of the composition-nominative approach to program formalization in Mizar. The Computer Science Journal of Moldova, 26(1):59–76, 2018.Ievgen Ivanov, Artur KorniƂowicz, and Mykola Nikitchenko. On an algorithmic algebra over simple-named complex-valued nominative data. Formalized Mathematics, 26(2):149–158, 2018. doi:10.2478/forma-2018-0012.Ievgen Ivanov, Artur KorniƂowicz, and Mykola Nikitchenko. An inference system of an extension of Floyd-Hoare logic for partial predicates. Formalized Mathematics, 26(2): 159–164, 2018. doi:10.2478/forma-2018-0013.Ievgen Ivanov, Artur KorniƂowicz, and Mykola Nikitchenko. Partial correctness of GCD algorithm. Formalized Mathematics, 26(2):165–173, 2018. doi:10.2478/forma-2018-0014.Ievgen Ivanov, Artur KorniƂowicz, and Mykola Nikitchenko. On algebras of algorithms and specifications over uninterpreted data. Formalized Mathematics, 26(2):141–147, 2018. doi:10.2478/forma-2018-0011.Adrian Jaszczak. Partial correctness of a power algorithm. Formalized Mathematics, 27 (2):189–195, 2019. doi:10.2478/forma-2019-0018.Adrian Jaszczak. General theory and tools for proving algorithms in nominative data systems. Formalized Mathematics, 28(4):269–278, 2020. doi:10.2478/forma-2020-0024.Adrian Jaszczak and Artur KorniƂowicz. Partial correctness of a factorial algorithm. Formalized Mathematics, 27(2):181–187, 2019. doi:10.2478/forma-2019-0017.Artur KorniƂowicz. Partial correctness of a Fibonacci algorithm. Formalized Mathematics, 28(2):187–196, 2020. doi:10.2478/forma-2020-0016.Artur KorniƂowicz, Andrii Kryvolap, Mykola Nikitchenko, and Ievgen Ivanov. Formalization of the algebra of nominative data in Mizar. In Maria Ganzha, Leszek A. Maciaszek, and Marcin Paprzycki, editors, Proceedings of the 2017 Federated Conference on Computer Science and Information Systems, FedCSIS 2017, Prague, Czech Republic, September 3–6, 2017., pages 237–244, 2017. ISBN 978-83-946253-7-5. doi:10.15439/2017F301.Artur KorniƂowicz, Andrii Kryvolap, Mykola Nikitchenko, and Ievgen Ivanov. Formalization of the nominative algorithmic algebra in Mizar. In Leszek Borzemski, Jerzy ƚwiątek, and Zofia Wilimowska, editors, Information Systems Architecture and Technology: Proceedings of 38th International Conference on Information Systems Architecture and Technology – ISAT 2017 – Part II, Szklarska Poręba, Poland, September 17–19, 2017, volume 656 of Advances in Intelligent Systems and Computing, pages 176–186. Springer, 2017. ISBN 978-3-319-67228-1. doi:10.1007/978-3-319-67229-8_16.Artur KorniƂowicz, Andrii Kryvolap, Mykola Nikitchenko, and Ievgen Ivanov. An approach to formalization of an extension of Floyd-Hoare logic. In Vadim Ermolayev, Nick Bassiliades, Hans-Georg Fill, Vitaliy Yakovyna, Heinrich C. Mayr, Vyacheslav Kharchenko, Vladimir Peschanenko, Mariya Shyshkina, Mykola Nikitchenko, and Aleksander Spivakovsky, editors, Proceedings of the 13th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer, Kyiv, Ukraine, May 15–18, 2017, volume 1844 of CEUR Workshop Proceedings, pages 504–523. CEUR-WS.org, 2017.Artur KorniƂowicz, Ievgen Ivanov, and Mykola Nikitchenko. Kleene algebra of partial predicates. Formalized Mathematics, 26(1):11–20, 2018. doi:10.2478/forma-2018-0002.Thomas Koshy. Fibonacci and Lucas Numbers with Applications, Volume 1. John Wiley & Sons, Inc., 2017. ISBN 978-1118742129. doi:10.1002/9781118742327.Andrii Kryvolap, Mykola Nikitchenko, and Wolfgang Schreiner. Extending Floyd-Hoare logic for partial pre- and postconditions. In Vadim Ermolayev, Heinrich C. Mayr, Mykola Nikitchenko, Aleksander Spivakovsky, and Grygoriy Zholtkevych, editors, Information and Communication Technologies in Education, Research, and Industrial Applications: 9th International Conference, ICTERI 2013, Kherson, Ukraine, June 19–22, 2013, Revised Selected Papers, pages 355–378. Springer International Publishing, 2013. ISBN 978-3-319-03998-5. doi:10.1007/978-3-319-03998-5_18.Volodymyr G. Skobelev, Mykola Nikitchenko, and Ievgen Ivanov. On algebraic properties of nominative data and functions. In Vadim Ermolayev, Heinrich C. Mayr, Mykola Nikitchenko, Aleksander Spivakovsky, and Grygoriy Zholtkevych, editors, Information and Communication Technologies in Education, Research, and Industrial Applications – 10th International Conference, ICTERI 2014, Kherson, Ukraine, June 9–12, 2014, Revised Selected Papers, volume 469 of Communications in Computer and Information Science, pages 117–138. Springer, 2014. ISBN 978-3-319-13205-1. doi:10.1007/978-3-319-13206-8_6.Steven Vajda. Fibonacci & Lucas Numbers, and the Golden Section: Theory and Applications. Dover Publications, 2007. ISBN 978-0486462769.28427928

    Supervised and Unsupervised Categorization of an Imbalanced Italian Crime News Dataset

    Get PDF
    The automatic categorization of crime news is useful to create statistics on the type of crimes occurring in a certain area. This assignment can be treated as a text categorization problem. Several studies have shown that the use of word embeddings improves outcomes in many Natural Language Processing (NLP), including text categorization. The scope of this paper is to explore the use of word embeddings for Italian crime news text categorization. The approach followed is to compare different document pre-processing, Word2Vec models and methods to obtain word embeddings, including the extraction of bigrams and keyphrases. Then, supervised and unsupervised Machine Learning categorization algorithms have been applied and compared. In addition, the imbalance issue of the input dataset has been addressed by using Synthetic Minority Oversampling Technique (SMOTE) to oversample the elements in the minority classes. Experiments conducted on an Italian dataset of 17,500 crime news articles collected from 2011 till 2021 show very promising results. The supervised categorization has proven to be better than the unsupervised categorization, overcoming 80% both in precision and recall, reaching an accuracy of 0.86. Furthermore, lemmatization, bigrams and keyphrase extraction are not so decisive. In the end, the availability of our model on GitHub together with the code we used to extract word embeddings allows replicating our approach to other corpus either in Italian or other languages

    Time-fluid field-based coordination

    Get PDF
    Emerging application scenarios, such as cyber-physical systems (CPSs), the Internet of Things (IoT), and edge computing, call for coordination approaches addressing openness, self-adaptation, heterogeneity, and deployment agnosticism. Field-based coordination is one such approach, promoting the idea of programming system coordination declaratively from a global perspective, in terms of functional manipulation and evolution in “space and time” of distributed data structures, called fields. More specifically, regarding time, in field-based coordination it is assumed that local activities in each device, called computational rounds, are regulated by a fixed clock, typically, a fair and unsynchronized distributed scheduler. In this work, we challenge this assumption, and propose an alternative approach where the round execution scheduling is naturally programmed along with the usual coordination specification, namely, in terms of a field of causal relations dictating what is the notion of causality (why and when a round has to be locally scheduled) and how it should change across time and space. This abstraction over the traditional view on global time allows us to express what we call “time-fluid” coordination, where causality can be finely tuned to select the event triggers to react to, up to to achieve improved balance between performance (system reactivity) and cost (usage of computational resources). We propose an implementation in the aggregate computing framework, and evaluate via simulation on a case study
    • 

    corecore