137 research outputs found

    Ultra-compact (80 mm2) differential-mode ultra-wideband (UWB) bandpass filters with common-mode noise suppression

    Get PDF
    This paper presents a novel approach for the implementation of balanced ultra-wideband (UWB) bandpass filters with common-mode noise suppression. To a first-order approximation, the differential-mode filter response is described by the canonical circuit model of a bandpass filter, i.e., a cascade of series-connected resonators alternating with shunt-connected parallel resonant tanks. Thus, the series branches of the balanced filter are implemented by means of inductive strips and patch capacitors, whereas the shunt sections are realized through mirrored stepped-impedance resonators (SIRs) and low-impedance (i.e., capacitive) short transmission-line sections. For the differential mode, the symmetry plane is a virtual ground, the wide strip sections of the SIRs are effectively grounded, and the SIRs behave as grounded inductors parallel connected to capacitors. However, for the common mode, where the symmetry plane is an open (magnetic wall), the SIRs act as shunt-connected series resonators, thus providing transmission zeros at their resonance frequencies. By properly tailoring the location of these transmission zeros, rejection of the common mode over the differential filter passband can be achieved. To illustrate the potential of the approach, an order-5 balanced bandpass filter covering the regulated band for UWB communications (3.1-10.6 GHz) is designed and fabricated. The filter exhibits common-mode rejection above 10 dB over the whole differential filter passband, with differential-mode insertion losses lower than 1.9 dB and return losses better than 10 dB. Since the proposed design approach is based on planar semi-lumped components, filter size is as small as 10.5 mm X 7.6 m

    Ultra-compact (80 mm 2) differential-mode ultra-wideband (UWB) bandpass filters with common-mode noise suppression

    Get PDF
    This paper presents a novel approach for the implementation of balanced ultra-wideband (UWB) bandpass filters with common-mode noise suppression. To a first-order approximation, the differential-mode filter response is described by the canonical circuit model of a bandpass filter, i.e., a cascade of series-connected resonators alternating with shunt-connected parallel resonant tanks. Thus, the series branches of the balanced filter are implemented by means of inductive strips and patch capacitors, whereas the shunt sections are realized through mirrored stepped-impedance resonators (SIRs) and low-impedance (i.e., capacitive) short transmission-line sections. For the differential mode, the symmetry plane is a virtual ground, the wide strip sections of the SIRs are effectively grounded, and the SIRs behave as grounded inductors parallel connected to capacitors. However, for the common mode, where the symmetry plane is an open (magnetic wall), the SIRs act as shunt-connected series resonators, thus providing transmission zeros at their resonance frequencies. By properly tailoring the location of these transmission zeros, rejection of the common mode over the differential filter passband can be achieved. To illustrate the potential of the approach, an order-5 balanced bandpass filter covering the regulated band for UWB communications (3.1-10.6 GHz) is designed and fabricated. The filter exhibits common-mode rejection above 10 dB over the whole differential filter passband, with differential-mode insertion losses lower than 1.9 dB and return losses better than 10 dB. Since the proposed design approach is based on planar semi-lumped components, filter size is as small as 10.5 mm ×\, 7.6 mm.Ministerio de Ciencia e Innovación TEC2010-17512, TEC2013-40600-R, TEC2013-41913-P, CSD2008-00066Gobierno Catalán 2014SGR-15

    Split rings-based differential transmission lines with common-mode suppression

    Get PDF
    A novel microstrip differential transmission line with common-mode noise suppression is proposed and experimentally validated. It is implemented by periodically etching complementary split ring resonators (CSRRs) in the ground plane. For the differential signals, the symmetry of the structure efficiently cancels the electric field components axial to the CSRRs, and these particles have no effect on signal transmission. However, the CSRRs are activated under common mode excitation, with the result of a stop-band behavior. For the designed and fabricated prototype device, over 20 dB suppression of common-mode noise is achieved over a frequency range from 1.18 GHz to 1.74 GHz.Ministerio de Ciencia e Innovació TEC2010-17512, CSD2008-00066Generalitat de Catalunya 2009SGR-42

    Dual-band balanced bandpass filter with common-mode suppression based on electrically small planar resonators

    Get PDF
    The design of fully planar dual-band balanced bandpass filters with common-mode noise suppression is reported. The proposed filters are based on electrically small resonators coupled through admittance inverters. For design purposes, the circuit models of the considered resonators are reported. The key aspect for selective mode suppression (i.e., common-mode rejection in the differential-mode pass bands) is related to symmetry properties. Thus, for the differential-mode the symmetry plane is an electric wall, and the equivalent circuit for that mode provides dual-band functionality. Conversely, for the common-mode the symmetry plane is a magnetic wall, and the equivalent circuit exhibits a rejection band. As a proof of concept, the design of an order-2 Chebyshev dual-band balanced bandpass filter with center frequencies f₁= 1.8 GHz (GSM band) and f₂=2.4 GHz (Wi-Fi band), fractional bandwidth FBW= 7%, and ripple level LA1= 0.01 dB is reported. Index Terms-Balanced filters, common-mod

    Testbeam studies of pre-prototype silicon strip sensors for the LHCb UT upgrade project

    Full text link
    The LHCb experiment is preparing for a major upgrade in 2018-2019. One of the key components in the upgrade is a new silicon tracker situated upstream of the analysis magnet of the experiment. The Upstream Tracker (UT) will consist of four planes of silicon strip detectors, with each plane covering an area of about 2 m2^2. An important consideration of these detectors is their performance after they have been exposed to a large radiation dose. In this article we present test beam results of pre-prototype n-in-p and p-in-n sensors that have been irradiated with fluences up to 4.0×10144.0\times10^{14} neqn_{\rm eq} cm2^{-2}.Comment: 25 pages, 20 figure

    A High TCMRR, Inherently Charge Balanced Bidirectional Front-End for Multichannel Closed-Loop Neuromodulation

    Get PDF
    This paper describes a multichannel bidirectional front-end for implantable closed-loop neuromodulation. Stimulation artefacts are reduced by way of a 4-channel H-bridge current source sharing stimulator front-end that minimizes residual charge drops in the electrodes via topology-inherent charge balancing. A 4-channel chopper front-end is capable of multichannel recording in the presence of artefacts as a result of its high total common-mode rejection ratio (TCMRR) that accounts for CMRR degradation due to electrode mismatch. Experimental verification of a prototype fabricated in a standard 180 nm process shows a stimulator front-end with 0.059% charge balance and 0.275 nA DC current error. The recording front-end consumes 3.24 µW, tolerates common-mode interference up to 1 Vpp and shows a TCMRR > 66 dB for 500 mVpp inputs.Ministerio de Economía y Competitividad TEC2016-80923-POffice of Naval Research (USA) N00014111031

    Differential microstrip lines with common-mode suppression based on electromagnetic band-gaps (EBGs)

    Get PDF
    CIMITECA technique for the suppression of the common mode in differential (balanced) microstrip lines, based on electromagnetic band-gaps (EBGs), is presented in this letter. It is demonstrated that by periodically modulating the common-mode characteristic impedance of the line and simultaneously forcing the differential-mode impedance to be uniform (and equal to the reference impedance of the differential ports), the common mode can be efficiently suppressed over a certain frequency band, while the line is transparent for the differential-mode. The main advantage of EBGs, as compared to other approaches for common-mode suppression in differential microstrip lines, is the fact that the ground plane is kept unaltered. Moreover, the design of the differential line is straightforward since the required level of common-mode suppression and bandwidth are given by simple approximate analytical expressions. As a design example, we report a four-stage common-mode suppressed differential line with 68% fractional bandwidth for the common-mode stopband centered at 2.4 GHz, and maximum common-mode rejection ratio (CMRR) of 19 dB at that frequency. Furthermore, we have designed and fabricated a six-stage double-tuned common-mode suppressed differential line in order to enhance the stopband bandwidth for the common mode around 2.4 GHz
    corecore