18,871 research outputs found

    A graph partition problem

    Full text link
    Given a graph GG on nn vertices, for which mm is it possible to partition the edge set of the mm-fold complete graph mKnmK_n into copies of GG? We show that there is an integer m0m_0, which we call the \emph{partition modulus of GG}, such that the set M(G)M(G) of values of mm for which such a partition exists consists of all but finitely many multiples of m0m_0. Trivial divisibility conditions derived from GG give an integer m1m_1 which divides m0m_0; we call the quotient m0/m1m_0/m_1 the \emph{partition index of GG}. It seems that most graphs GG have partition index equal to 11, but we give two infinite families of graphs for which this is not true. We also compute M(G)M(G) for various graphs, and outline some connections between our problem and the existence of designs of various types

    2178 And All That

    Full text link
    For integers g >= 3, k >= 2, call a number N a (g,k)-reverse multiple if the reversal of N in base g is equal to k times N. The numbers 1089 and 2178 are the two smallest (10,k)-reverse multiples, their reversals being 9801 = 9x1089 and 8712 = 4x2178. In 1992, A. L. Young introduced certain trees in order to study the problem of finding all (g,k)-reverse multiples. By using modified versions of her trees, which we call Young graphs, we determine the possible values of k for bases g = 2 through 100, and then show how to apply the transfer-matrix method to enumerate the (g,k)-reverse multiples with a given number of base-g digits. These Young graphs are interesting finite directed graphs, whose structure is not at all well understood.Comment: 22 pages, 16 figures, one table. July 4 2013: corrected typo in table, added conjectures about particular graphs. Sept. 24 2013: corrected typos, added conjectures and theorems. Oct 13 2013: minor edit

    Overcoming barriers in mathematics - helping children move from level 4 to level 5

    Get PDF

    Classifying Voronoi graphs of hex spheres

    Full text link
    A hex sphere is a singular Euclidean sphere with four cones points whose cone angles are (integer) multiples of 2*pi/3 but less than 2*pi. Given a hex sphere M, we consider its Voronoi decomposition centered at the two cone points with greatest cone angles. In this paper we use elementary Euclidean geometry to describe the Voronoi regions of hex spheres and classify the Voronoi graphs of hex spheres (up to graph isomorphism).Comment: 14 pages, 9 figure
    • …
    corecore