88,152 research outputs found

    Design strategies and functionality of the Visual Interface for Virtual Interaction Development (VIVID) tool

    Get PDF
    Development of interactive virtual environments (VE) has typically consisted of three primary activities: model (object) development, model relationship tree development, and environment behavior definition and coding. The model and relationship tree development activities are accomplished with a variety of well-established graphic library (GL) based programs - most utilizing graphical user interfaces (GUI) with point-and-click interactions. Because of this GUI format, little programming expertise on the part of the developer is necessary to create the 3D graphical models or to establish interrelationships between the models. However, the third VE development activity, environment behavior definition and coding, has generally required the greatest amount of time and programmer expertise. Behaviors, characteristics, and interactions between objects and the user within a VE must be defined via command line C coding prior to rendering the environment scenes. In an effort to simplify this environment behavior definition phase for non-programmers, and to provide easy access to model and tree tools, a graphical interface and development tool has been created. The principal thrust of this research is to effect rapid development and prototyping of virtual environments. This presentation will discuss the 'Visual Interface for Virtual Interaction Development' (VIVID) tool; an X-Windows based system employing drop-down menus for user selection of program access, models, and trees, behavior editing, and code generation. Examples of these selection will be highlighted in this presentation, as will the currently available program interfaces. The functionality of this tool allows non-programming users access to all facets of VE development while providing experienced programmers with a collection of pre-coded behaviors. In conjunction with its existing, interfaces and predefined suite of behaviors, future development plans for VIVID will be described. These include incorporation of dual user virtual environment enhancements, tool expansion, and additional behaviors

    Effects of Interpretation Error on User Learning in Novel Input Mechanisms

    Get PDF
    Novel input mechanisms generate signals that are interpreted as commands in computer systems. Sometimes noise from various sources can cause the system to produce errors when attempting to interpret the signal, causing a misrepresentation of the user's intention. While research has been done in understanding how these interpretation errors affect the performance of users of novel signal-based input mechanisms, such as a brain-computer interface (BCI), there is a lack of knowledge in how user learning is affected. Previous literature in command-based selection tasks has suggested that errors will have a negative impact on expertise development; however, the presence of errors could conversely improve a user's learning by demanding more attention from the user. This thesis begins by studying people's ability to use a novel input mechanism with a noisy input signal: a motor imagery BCI. By converting a user's brain signals into computer commands, a user could complete selection tasks using imagined movement. However, the high degree of interpretation errors caused by noise in the input signals made it difficult to differentiate the user's intent from the noise. As such, the results of the BCI study served as motivation to test the effects of interpretation errors on user learning. Two studies were conducted to determine how user performance and learning were affected by different rates of interpretation error in a novel input mechanism. The results from these two studies showed that interpretation errors led to slower task completion times, lower accuracy in memory recall, greater rates of user errors, and increased frustration. This new knowledge about the effects of interpretation errors can contribute to better design of input mechanisms and training programs for novel input systems

    Application of expert systems in project management decision aiding

    Get PDF
    The feasibility of developing an expert systems-based project management decision aid to enhance the performance of NASA project managers was assessed. The research effort included extensive literature reviews in the areas of project management, project management decision aiding, expert systems technology, and human-computer interface engineering. Literature reviews were augmented by focused interviews with NASA managers. Time estimation for project scheduling was identified as the target activity for decision augmentation, and a design was developed for an Integrated NASA System for Intelligent Time Estimation (INSITE). The proposed INSITE design was judged feasible with a low level of risk. A partial proof-of-concept experiment was performed and was successful. Specific conclusions drawn from the research and analyses are included. The INSITE concept is potentially applicable in any management sphere, commercial or government, where time estimation is required for project scheduling. As project scheduling is a nearly universal management activity, the range of possibilities is considerable. The INSITE concept also holds potential for enhancing other management tasks, especially in areas such as cost estimation, where estimation-by-analogy is already a proven method

    A rapid prototyping/artificial intelligence approach to space station-era information management and access

    Get PDF
    Applications of rapid prototyping and Artificial Intelligence techniques to problems associated with Space Station-era information management systems are described. In particular, the work is centered on issues related to: (1) intelligent man-machine interfaces applied to scientific data user support, and (2) the requirement that intelligent information management systems (IIMS) be able to efficiently process metadata updates concerning types of data handled. The advanced IIMS represents functional capabilities driven almost entirely by the needs of potential users. Space Station-era scientific data projected to be generated is likely to be significantly greater than data currently processed and analyzed. Information about scientific data must be presented clearly, concisely, and with support features to allow users at all levels of expertise efficient and cost-effective data access. Additionally, mechanisms for allowing more efficient IIMS metadata update processes must be addressed. The work reported covers the following IIMS design aspects: IIMS data and metadata modeling, including the automatic updating of IIMS-contained metadata, IIMS user-system interface considerations, including significant problems associated with remote access, user profiles, and on-line tutorial capabilities, and development of an IIMS query and browse facility, including the capability to deal with spatial information. A working prototype has been developed and is being enhanced

    A study of the very high order natural user language (with AI capabilities) for the NASA space station common module

    Get PDF
    The requirements are identified for a very high order natural language to be used by crew members on board the Space Station. The hardware facilities, databases, realtime processes, and software support are discussed. The operations and capabilities that will be required in both normal (routine) and abnormal (nonroutine) situations are evaluated. A structure and syntax for an interface (front-end) language to satisfy the above requirements are recommended

    Investigating Performance and Usage of Input Methods for Soft Keyboard Hotkeys

    Get PDF
    Touch-based devices, despite their mainstream availability, do not support a unified and efficient command selection mechanism, available on every platform and application. We advocate that hotkeys, conventionally used as a shortcut mechanism on desktop computers, could be generalized as a command selection mechanism for touch-based devices, even for keyboard-less applications. In this paper, we investigate the performance and usage of soft keyboard shortcuts or hotkeys (abbreviated SoftCuts) through two studies comparing different input methods across sitting, standing and walking conditions. Our results suggest that SoftCuts not only are appreciated by participants but also support rapid command selection with different devices and hand configurations. We also did not find evidence that walking deters their performance when using the Once input method.Comment: 17+2 pages, published at Mobile HCI 202

    Knowledge-based control of an adaptive interface

    Get PDF
    The analysis, development strategy, and preliminary design for an intelligent, adaptive interface is reported. The design philosophy couples knowledge-based system technology with standard human factors approaches to interface development for computer workstations. An expert system has been designed to drive the interface for application software. The intelligent interface will be linked to application packages, one at a time, that are planned for multiple-application workstations aboard Space Station Freedom. Current requirements call for most Space Station activities to be conducted at the workstation consoles. One set of activities will consist of standard data management services (DMS). DMS software includes text processing, spreadsheets, data base management, etc. Text processing was selected for the first intelligent interface prototype because text-processing software can be developed initially as fully functional but limited with a small set of commands. The program's complexity then can be increased incrementally. The intelligent interface includes the operator's behavior and three types of instructions to the underlying application software are included in the rule base. A conventional expert-system inference engine searches the data base for antecedents to rules and sends the consequents of fired rules as commands to the underlying software. Plans for putting the expert system on top of a second application, a database management system, will be carried out following behavioral research on the first application. The intelligent interface design is suitable for use with ground-based workstations now common in government, industrial, and educational organizations
    • 

    corecore