5,868 research outputs found

    The effect of robot speed on comfortable passing distances

    Get PDF
    Robots navigate ever more often in close proximity to people. In the current work, we focused on two distinctive navigational scenarios: passing and overtaking a person who is walking. In the first experiment, we compared nine different passing distances for a humanoid robot and found that human comfort increased with passing distance and that their relationship could be described by an inverted Gaussian. In the second experiment, we validated this relationship for an industrial autonomous robot and extended the study to also include overtaking distances and different robot moving speeds. The results showed that overtaking was considered to be less comfortable than passing but that the overtaking distance had a similar relationship with human comfort. Human comfort decreases with a higher robot movement speed. Results obtained through location trackers furthermore showed that people actively take a larger distance from the robot when it starts its trajectory closer to them. The current results can be used to quantify human comfort in environments where humans and robots co-exist and they can be used as input for human-aware navigational models for autonomous robots

    An empirical framework for human-robot proxemics

    Get PDF
    The work described in this paper was conducted within the EU Integrated Projects COGNIRON ("The Cognitive Robot Companion") and LIREC (LIving with Robots and intEractive Companions) and was funded by the European Commission under contract numbers FP6- 002020 and FP7-215554.An empirical framework for Human-Robot (HR) proxemics is proposed which shows how the measurement and control of interpersonal distances between a human and a robot can be potentially used by the robot to interpret, predict and manipulate proxemic behaviour for Human-Robot Interactions (HRIs). The proxemic framework provides for incorporation of inter-factor effects, and can be extended to incorporate new factors, updated values and results. The framework is critically discussed and future work proposed

    Modeling Human-Robot Interaction in Three Dimensions

    Get PDF
    This dissertation answers the question: Can a small autonomous UAV change a person's movements by emulating animal behaviors? Human-robot interaction (HRI) has generally been limited to engagements with ground robots at human height or shorter, essentially working on the same two dimensional plane, but this ignores potential interactions where the robot may be above the human such as small un- manned aerial vehicles (sUAVs) for crowd control and evacuation or for underwater or space vehicles acting as assistants for divers or astronauts. The dissertation combines two approaches {behavioral robotics and HRI {to create a model of \Comfortable Distance" containing the information about human-human and human-ground robot interactions and extends it to three dimensions. Behavioral robotics guides the ex- amination and transfer of relevant behaviors from animals, most notably mammals, birds, and ying insects, into a computational model that can be programmed in simulation and on a sUAV. The validated model of proxemics in three dimensions makes a fundamental contribution to human-robot interaction. The results also have significant benefit to the public safety community, leading to more effective evacuation and crowd control, and possibly saving lives. Three findings from this experiment were important in regards to sUAVs for evacuation: i) expressions focusing on the person, rather than the area, are good for decreasing time (by 7.5 seconds, p <.0001) and preference (by 17.4 %, p <.0001), ii) personal defense behaviors are best for decreasing time of interaction (by about 4 seconds, p <.004), while site defense behaviors are best for increasing distance of interaction (by about .5 m, p <.003), and iii) Hediger's animal zones may be more applicable than Hall's human social zones when considering interactions with animal behaviors in sUAVs

    Automated pick-up of suturing needles for robotic surgical assistance

    Get PDF
    Robot-assisted laparoscopic prostatectomy (RALP) is a treatment for prostate cancer that involves complete or nerve sparing removal prostate tissue that contains cancer. After removal the bladder neck is successively sutured directly with the urethra. The procedure is called urethrovesical anastomosis and is one of the most dexterity demanding tasks during RALP. Two suturing instruments and a pair of needles are used in combination to perform a running stitch during urethrovesical anastomosis. While robotic instruments provide enhanced dexterity to perform the anastomosis, it is still highly challenging and difficult to learn. In this paper, we presents a vision-guided needle grasping method for automatically grasping the needle that has been inserted into the patient prior to anastomosis. We aim to automatically grasp the suturing needle in a position that avoids hand-offs and immediately enables the start of suturing. The full grasping process can be broken down into: a needle detection algorithm; an approach phase where the surgical tool moves closer to the needle based on visual feedback; and a grasping phase through path planning based on observed surgical practice. Our experimental results show examples of successful autonomous grasping that has the potential to simplify and decrease the operational time in RALP by assisting a small component of urethrovesical anastomosis

    The Influence of Distance and Lateral Offset of Follow Me Robots on User Perception

    Get PDF
    Robots that are designed to work in close proximity to humans are required to move and act in a way that ensures social acceptance by their users. Hence, a robot's proximal behavior toward a human is a main concern, especially in human-robot interaction that relies on relatively close proximity. This study investigated how the distance and lateral offset of “Follow Me” robots influences how they are perceived by humans. To this end, a Follow Me robot was built and tested in a user study for a number of subjective variables. A total of 18 participants interacted with the robot, with the robot's lateral offset and distance varied in a within-subject design. After each interaction, participants were asked to rate the movement of the robot on the dimensions of comfort, expectancy conformity, human likeness, safety, trust, and unobtrusiveness. Results show that users generally prefer robot following distances in the social space, without a lateral offset. However, we found a main influence of affinity for technology, as those participants with a high affinity for technology preferred closer following distances than participants with low affinity for technology. The results of this study show the importance of user-adaptiveness in human-robot-interaction.DFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische Universität Berli

    A computational model of human-robot spatial interactions based on a qualitative trajectory calculus

    Get PDF
    In this paper we propose a probabilistic sequential model of Human-Robot Spatial Interaction (HRSI) using a well-established Qualitative Trajectory Calculus (QTC) to encode HRSI between a human and a mobile robot in a meaningful, tractable, and systematic manner. Our key contribution is to utilise QTC as a state descriptor and model HRSI as a probabilistic sequence of such states. Apart from the sole direction of movements of human and robot modelled by QTC, attributes of HRSI like proxemics and velocity profiles play vital roles for the modelling and generation of HRSI behaviour. In this paper, we particularly present how the concept of proxemics can be embedded in QTC to facilitate richer models. To facilitate reasoning on HRSI with qualitative representations, we show how we can combine the representational power of QTC with the concept of proxemics in a concise framework, enriching our probabilistic representation by implicitly modelling distances. We show the appropriateness of our sequential model of QTC by encoding different HRSI behaviours observed in two spatial interaction experiments. We classify these encounters, creating a comparative measurement, showing the representational capabilities of the model

    Mobile Robots in Human Environments:towards safe, comfortable and natural navigation

    Get PDF
    corecore