4 research outputs found

    Advances in Character Recognition

    Get PDF
    This book presents advances in character recognition, and it consists of 12 chapters that cover wide range of topics on different aspects of character recognition. Hopefully, this book will serve as a reference source for academic research, for professionals working in the character recognition field and for all interested in the subject

    Static and dynamic selection of ensemble of classifiers

    Get PDF
    Nous présentons dans cette thèse plusieurs solutions novatrices pour tenter de solutionner trois problèmes fondamentaux reliés à la conception des ensembles de classifieurs: la génération des classificateurs, la sélection et la fusion. Une nouvelle fonction de fusion (Compound Diversity Function - CDF) basée sur la prise en compte de la performance individuelle des classificateurs et de la diversité entre pairs de classificateurs. Une nouvelle fonction de fusion basée sur les matrices de confusions "pairwise" (PFM), mieux adaptée pour la fusion des classificateurs en présence d'un grand nombre de classes. Une nouvelle méthode pour générer des ensembles de Mo- dèles de Markov Cachés (Hidden Markov Models - EoHMM) pour la reconnaissance des caractères manuscrits. Une solution novatrice repose sur le concept des Oracles associés aux données de la base de validation (KNORA). Une nouvelle approche pour la sélection des sous-espaces de représentation à partir d'une mesure de diversité évaluée entre les paires de partitions

    Pattern Recognition

    Get PDF
    A wealth of advanced pattern recognition algorithms are emerging from the interdiscipline between technologies of effective visual features and the human-brain cognition process. Effective visual features are made possible through the rapid developments in appropriate sensor equipments, novel filter designs, and viable information processing architectures. While the understanding of human-brain cognition process broadens the way in which the computer can perform pattern recognition tasks. The present book is intended to collect representative researches around the globe focusing on low-level vision, filter design, features and image descriptors, data mining and analysis, and biologically inspired algorithms. The 27 chapters coved in this book disclose recent advances and new ideas in promoting the techniques, technology and applications of pattern recognition

    Deep Vision in Optical Imagery: From Perception to Reasoning

    Get PDF
    Deep learning has achieved extraordinary success in a wide range of tasks in computer vision field over the past years. Remote sensing data present different properties as compared to natural images/videos, due to their unique imaging technique, shooting angle, etc. For instance, hyperspectral images usually have hundreds of spectral bands, offering additional information, and the size of objects (e.g., vehicles) in remote sensing images is quite limited, which brings challenges for detection or segmentation tasks. This thesis focuses on two kinds of remote sensing data, namely hyper/multi-spectral and high-resolution images, and explores several methods to try to find answers to the following questions: - In comparison with natural images or videos in computer vision, the unique asset of hyper/multi-spectral data is their rich spectral information. But what this “additional” information brings for learning a network? And how do we take full advantage of these spectral bands? - Remote sensing images at high resolution have pretty different characteristics, bringing challenges for several tasks, for example, small object segmentation. Can we devise tailored networks for such tasks? - Deep networks have produced stunning results in a variety of perception tasks, e.g., image classification, object detection, and semantic segmentation. While the capacity to reason about relations over space is vital for intelligent species. Can a network/module with the capacity of reasoning benefit to parsing remote sensing data? To this end, a couple of networks are devised to figure out what a network learns from hyperspectral images and how to efficiently use spectral bands. In addition, a multi-task learning network is investigated for the instance segmentation of vehicles from aerial images and videos. Finally, relational reasoning modules are designed to improve semantic segmentation of aerial images
    corecore